Tensorboard存数据代码解释

本文详细介绍了如何使用TensorBoard记录训练过程中的数据,包括定义变量、添加summary、设置保存路径等关键步骤,帮助读者掌握利用TensorBoard进行数据可视化的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

记录tensorboard存数据代码功能

如果你想要存放一个变量的话,你需要先定义一下,这里我创建了一个定义平均奖励的变量:

self.average_reward = tf.Variable(0.1, trainable=False)

之后我们将这个变量加到tensorboard的summary里面,这样的话,我们之后就需要运行这个节点,然后把值传入进去,tensorboard就会自动帮我们加载。

self.average_reward = model.average_reward
self.aver_rewards = tf.summary.scalar('Average-Reward', self.average_reward)

我们还需要定义保存的路径:

self.summary_writer = tf.summary.FileWriter("logs/", self.sess.graph)

这样的话我们开始的步骤就完成了,之后我们想要存数据的话,我们可以通过下面的方式去调用就可以了。

average_r = np.mean(average_rewards)
aver_rewards = self.sess.run(self.aver_rewards, {self.average_reward: average_r})
self.summary_writer.add_summary(aver_rewards, self.step)

我们先计算出我们需要tensorboard记录的数据,之后我们run一下我们之前定义的scalar节点,然后把scalar需要的数据传入进去即可,最后我们将数据和训练步数add进summary里面就可以啦。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值