1. 写在前面
这个系列很久没有更新了, 主要是前段时间经历了一波秋招, 后面的方向可能稍微偏数据挖掘和cv多一些,所以向这两块又稍微延展了一下,没来得及看推荐相关的论文,这次借着和如意大佬整理fun-rec项目的机会, 才重新又看起了之前一直想整理的经典模型, 对于推荐, 还是想把之前学习的知识沉淀下来的, 当然,可能后面的整理比较适合像我一样的初学者了吧,想法还是以经典paper解读为主, 学习一些新思想,并进行NLP, 推荐,cv, ML和DL等各种知识的串联。
关于后面的整理, 我也梳理了一个思维框架:
这是我经过了实习和学习推荐相关理论知识后,按照自己的理解对工业推荐系统需要的硬性知识做的一个思维导图
“热追"推荐算法的特色是从实际应用的角度去梳理推荐系统领域目前常用的一些关键技术,主要包括召回粗排,精排,重排以及冷启动,这几个差不多撑起了工业界推荐系统的流程。召回的目的是根据用户部分特征,从海量物品库,快速找到小部分用户潜在感兴趣的物品交给精排,重点强调快,精排主要是融入更多特征,使用复杂模型,来做个性化推荐,强调准, 但有时候,排序环节的速度是跟不上召回的,所以往往也可以在这两块直接加一个粗排,用少量用户和物品特征,对召回结果再先进行一波筛选。 而重排侧,主要是结合精排的结果,再加上各种业务策略,比如去重,插入,打散,多样性保证等,主要是技术产品策略主导或改善用户体验的。 所以这四个环节组合起来,以"迅雷不及掩耳漏斗之势