最好情况时间复杂度
最坏情况时间复杂度
平均情况时间复杂度
均摊时间复杂度
最好、最坏情况时间复杂度
// n表示数组array的长度
int find(int[] array, int n, int x) {
int i = 0;
int pos = -1;
for (; i < n; ++i) {
if (array[i] == x) pos = i;
}
return pos;
}
这段代码的复杂度是O(n),其中n代表数组的长度
我们在数组中查找一个数据,并不需要每次都把整个数组都遍历一遍,因为有可能中途找到就可以提前结束循环了。但是,这段代码不够高效。可以优化一下这段查找代码
// n表示数组array的长度
int find(int[] array, int n, int x) {
int i = 0;
int pos = -1;
for (; i < n; ++i) {
if (array[i] == x) pos = i;
}
return pos;
}
最好情况时间复杂度就是,在最理想的情况下,执行这段代码的时间复杂度。就像上面的代码,在最理想情况下,要查找的变量x正好是数组的第一个元素,这个时候对应的时间复杂度就是最好情况时间复杂度
同理,最坏情况时间复杂度就是,在最槽糕的情况下,执行这段代码的时间复杂度。如果数组中没有要查找的变量x,我们需要把整个数组都遍历一遍才行,所以这种最槽糕情况下对应的时间复杂度就是最坏情况时间复杂度
平均情况时间复杂度
要查找的变量x在数组中的位置,有n+1种情况:在数组的0~n-1 和 不在数组中。我们把每种情况下,查找需要遍历的元素个数累加起来,然后除以n+1,就可以得到需要遍历的元素个数平均值,即:
我们知道,时间复杂度的大 O 标记法中,可以省略掉系数、低阶、常量,所以,咱们把刚刚这个公式简化之后,得到的平均时间复杂度就是 O(n)
均摊时间复杂度
均摊时间复杂度就是一种特殊的平均时间复杂度