浅析最好、最坏、平均、均摊时间复杂度

本文深入解析了算法的时间复杂度概念,包括最好、最坏、平均和均摊时间复杂度,通过具体代码示例,详细解释了如何计算这些复杂度,为理解和优化算法效率提供了关键洞察。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最好情况时间复杂度

最坏情况时间复杂度

平均情况时间复杂度

均摊时间复杂度

 

最好、最坏情况时间复杂度


// n表示数组array的长度
int find(int[] array, int n, int x) {
  int i = 0;
  int pos = -1;
  for (; i < n; ++i) {
    if (array[i] == x) pos = i;
  }
  return pos;
}

这段代码的复杂度是O(n),其中n代表数组的长度

我们在数组中查找一个数据,并不需要每次都把整个数组都遍历一遍,因为有可能中途找到就可以提前结束循环了。但是,这段代码不够高效。可以优化一下这段查找代码


// n表示数组array的长度
int find(int[] array, int n, int x) {
  int i = 0;
  int pos = -1;
  for (; i < n; ++i) {
    if (array[i] == x) pos = i;
  }
  return pos;
}

 

最好情况时间复杂度就是,在最理想的情况下,执行这段代码的时间复杂度。就像上面的代码,在最理想情况下,要查找的变量x正好是数组的第一个元素,这个时候对应的时间复杂度就是最好情况时间复杂度

同理,最坏情况时间复杂度就是,在最槽糕的情况下,执行这段代码的时间复杂度。如果数组中没有要查找的变量x,我们需要把整个数组都遍历一遍才行,所以这种最槽糕情况下对应的时间复杂度就是最坏情况时间复杂度

平均情况时间复杂度

要查找的变量x在数组中的位置,有n+1种情况:在数组的0~n-1 和 不在数组中。我们把每种情况下,查找需要遍历的元素个数累加起来,然后除以n+1,就可以得到需要遍历的元素个数平均值,即:


 

我们知道,时间复杂度的大 O 标记法中,可以省略掉系数、低阶、常量,所以,咱们把刚刚这个公式简化之后,得到的平均时间复杂度就是 O(n)

 

均摊时间复杂度

均摊时间复杂度就是一种特殊的平均时间复杂度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值