目录
算法目标
一个算法上线后,到底是好还是不好,由具体的效果说了算。 算法效果大致可以从以下方面思考:
- 业务指标。 业务上,达到了什么效果
- 转化类效果指标。 pv,uv提升多少、带来了多少新客流,转化率(如购买率)等
- 技术类效果指标。算法效率提升多少,性能提升多少
算法测试类型
算法测试前工作:
检查算法模型的先验假设的合理性
数据清洗
1、算法模型测试
针对算法模型中的各种场景/参数组合进行测试。例如,常见的推荐系统中的相似度算法测试(相似度算法),可以考虑:
- 使用了哪种相似度算法,是否正常实现
- 算法的短板在哪里,是否可接受
- 算法输出数据效果优劣。比如,召回率/数量,推荐的数据是否符合算法等
- 算法回归测试。算法进行各种优化后,确保之前的逻辑没有被改坏