Global Attention Mechanism (GAM) 注意力机制模块,旨在通过减少信息丢失并增强全局交互表示来提升深度神经网络的性能。GAM模块通过保留通道(channel)和空间(spatial)维度的信息,增强跨维度交互,从而在图像分类任务中取得了显著的性能提升。
目录
🍀🍀1.GAM模块的设计动机
🍉1.1现有注意力机制的局限性
-
传统的注意力机制(如SENet、CBAM、BAM等)虽然在通道(channel)和空间(spatial)维度上分别取得了性能提升,但它们通常忽略了通道和空间维度之间的全局交互。
-
这些方法在信息传递过程中存在信息丢失问题,尤其是在处理全局交互时,导致性能提升有限。
🍉1.2跨维度交互的重要性
-
通道和空间维度的信息是相互关联的,全局交互能够更好地捕捉特征图中的重要信息。
-
作者提出一种“全局”注意力机制(GAM),通过保留信息并放大全局交互,提升模型对特征的感知能力。
🌾🌾2.GAM模块网络结构
🍋2.1总体架构
-
GAM模块基于CBAM的顺序通道-空间注意力机制进行改进,包含两个子模块:通道注意力子模块(Channel Attention)和空间注意力子模块(Spatial Attention)。
-
输入特征图 F1 经过通道注意力子模块后得到中间状态 F2,再经过空间注意力子模块得到输出 F3。
其网络结构图如下:
🍋2.2通道注意力子模块
-
使用 3D排列 保留三个维度(通道、宽度、高度)的信息。
-
通过一个两层的多层感知机(MLP,采用编码器-解码器结构)放大跨维度的通道-空间依赖关系。
-
MLP的结构与BAM类似,包含一个压缩比率 r。
🍋2.3空间注意力子模块
-
使用两个卷积层进行空间信息融合。
-
为了保留更多的特征图信息,移除了传统的最大池化(max-pooling)操作。
-
为了避免参数数量显著增加,对于ResNet50,采用分组卷积(group convolution)和通道混洗(channel shuffle)技术。
🍋2.4公式表示
对于给定输入,其输出表示为:
🍓🍓3.GAM模块的优点
-
全局交互增强:
-
GAM通过保留通道和空间维度的信息,增强了全局交互,能够更好地捕捉特征图中的重要信息。
-
-
性能提升显著:
-
在CIFAR-100和ImageNet-1K数据集上,GAM模块显著优于现有的多种注意力机制模块(如SENet、BAM、CBAM等),尤其是在ResNet和MobileNet等不同架构上均表现出稳定的性能提升。
-
-
适应性广:
-
GAM模块不仅适用于标准的ResNet架构,还能够在轻量级网络(如MobileNet)上取得良好的效果,展示了其在不同网络架构和深度上的适用性。
-
-
可扩展性强:
-
通过分组卷积和通道混洗技术,GAM能够在不显著增加参数数量的情况下,进一步提升性能,适合在大规模模型中应用。
-
🍂🍂4.GAM模块的适用场景
-
图像分类任务:
GAM模块在CIFAR-100和ImageNet-1K数据集上表现出色,适用于需要高精度图像分类的场景。 -
轻量级网络优化:
对于资源受限的设备(如移动设备或嵌入式系统),GAM可以在不显著增加计算成本的情况下提升轻量级网络(如MobileNet)的性能。 -
多尺度数据处理:
GAM模块在不同网络深度和架构上均表现出良好的性能,适用于需要处理大规模数据集(如ImageNet)的场景。 -
跨维度交互增强:
当任务需要同时捕捉通道和空间维度信息时,GAM模块能够有效增强特征表示,提升模型的整体性能。
🙋🙋5.创新点GAM模块python代码
- 新增GAM.py文件
GAM.py内容如下:
import torch
import torch.nn as nn
# GAM Attention Start
def channel_shuffle(x, groups=2): ##shuffle channel
# RESHAPE----->transpose------->Flatten
B, C, H, W = x.size()
out = x.view(B, groups, C // groups, H, W).permute(0, 2, 1, 3, 4).contiguous()
out = out.view(B, C, H, W)
return out
# Global Attention Mechanism
class GAM_Attention(nn.Module):
def __init__(self, c1, c2, group=True, rate=4):
super(GAM_Attention, self).__init__()
self.channel_attention = nn.Sequential(
nn.Linear(c1, int(c1 / rate)),
nn.ReLU(inplace=True),
nn.Linear(int(c1 / rate), c1),
)
self.spatial_attention = nn.Sequential(
nn.Conv2d(c1, c1 // rate, kernel_size=7, padding=3, groups=rate)
if group
else nn.Conv2d(c1, int(c1 / rate), kernel_size=7, padding=3),
nn.BatchNorm2d(int(c1 / rate)),
nn.ReLU(inplace=True),
nn.Conv2d(c1 // rate, c2, kernel_size=7, padding=3, groups=rate)
if group
else nn.Conv2d(int(c1 / rate), c2, kernel_size=7, padding=3),
nn.BatchNorm2d(c2),
)
def forward(self, x):
b, c, h, w = x.shape
x_permute = x.permute(0, 2, 3, 1).view(b, -1, c)
x_att_permute = self.channel_attention(x_permute).view(b, h, w, c)
x_channel_att = x_att_permute.permute(0, 3, 1, 2)
x = x * x_channel_att
x_spatial_att = self.spatial_attention(x).sigmoid()
x_spatial_att = channel_shuffle(x_spatial_att, 4) # last shuffle
out = x * x_spatial_att
return out
# GAM Attention End
- 修改ultralytics/nn/tasks.py
新增定义引入,python代码如下:
from ultralytics.nn.GAM import GAM_Attention
然后,修改def parse_model(d,ch,verbose=True)函数,在1040行新增条件判断,修改后python代码如下:
if m in base_modules:
c1, c2 = ch[f], args[0]
if c2 != nc: # if c2 not equal to number of classes (i.e. for Classify() output)
c2 = make_divisible(min(c2, max_channels) * width, 8)
if m is C2fAttn: # set 1) embed channels and 2) num heads
args[1] = make_divisible(min(args[1], max_channels // 2) * width, 8)
args[2] = int(max(round(min(args[2], max_channels // 2 // 32)) * width, 1) if args[2] > 1 else args[2])
args = [c1, c2, *args[1:]]
if m in repeat_modules:
args.insert(2, n) # number of repeats
n = 1
if m is C3k2: # for M/L/X sizes
legacy = False
if scale in "mlx":
args[3] = True
elif m is AIFI:
args = [ch[f], *args]
###### attention ######
elif m is GAM_Attention:
c2 = ch[f]
args = [c2, *args]
###### attention ######
最后三行为新增代码
- 修改模型定义yaml文件
例如,在YOLO11的backbone的最后一个环节C2PSA之后添加GAM模块,yolo_GAMAttention.yaml的示例如下:
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 2 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 2, C2PSA, [1024]] # 10
- [-1, 1, GAM_Attention, []] # 11
# YOLO11n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 13
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
- [[17, 20, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)
其他位置添加MSCAAttention模块的用法也是一样的,只需在模型定义yaml文件中新增模块就行了。
至此YOLO11工程修改就完成了,可以愉快的开始你的炼丹之旅了。
整理不易,欢迎一键三连!!!
送你们一条美丽的--分割线--
🌷🌷🍀🍀🌾🌾🍓🍓🍂🍂🙋🙋🐸🐸🙋🙋💖💖🍌🍌🔔🔔🍉🍉🍭🍭🍋🍋🍇🍇🏆🏆📸📸⛵⛵⭐⭐🍎🍎👍👍🌷🌷