【YOLOv12改进trick】三重注意力TripletAttention引入YOLOv12中,实现遮挡目标检测涨点,含创新点Python代码,方便发论文

🍋改进模块🍋:三重注意力机制(TripletAttention
🍋解决问题🍋:TripletAttention模块解决了传统注意力机制在计算注意力权重时未能充分捕捉跨维度交互的问题。
🍋改进优势🍋:几乎不增加额外的可学习参数,涨点很明显
🍋适用场景🍋:小目标检测、遮挡目标检测
🍋思路来源🍋:WACV2021《MRotate to Attend: Convolutional Triplet Attention Module》

目录

🔔🔔1.设计动机

🍉🍉2.三重注意力机制(TripletAttention)模块优势

👍轻量级设计

👍高效的跨维度交互

👍广泛的适用性

👍显著的性能提升

🏆🏆3.TripletAttention结构

🐸输入张量

🐸三个分支

🐸输出

 👍👍4.将TripletAttention引入YOLOv12的python代码修改

🍂修改处一

🍂修改处二

🍂修改处三

🍂修改处四

👍👍5.成功训练后的网络结构截图

整理不易,欢迎一键三连!!!

送你们一条

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zy_destiny

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值