机器学习与数据挖掘

本文介绍了对葡萄酒质量数据集的分析,包括数据清洗、数据可视化和多种机器学习模型(KNN、逻辑回归、决策树)的应用。数据集无缺失值,特征包括酸度、甜度等12个理化指标,与质量评分相关。通过模型训练,发现酒精浓度、挥发性酸度和柠檬酸对红酒品质影响显著,KNN分类器在选择合适的k值后表现出较好的预测效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题分析过程及数据集介绍
【相关数据集以上传至‘资源’,如有其它需求请私信博主】

  • 酒数据数据集:https://download.csdn.net/download/qq_53810245/85994266

  • 酒数据KNN算法进行预测:https://download.csdn.net/download/qq_53810245/85994483

  • 酒数据决策树预测:https://download.csdn.net/download/qq_53810245/85994500

数据集中有有两个数据集,红葡萄酒winequality-red.csv数据集和白葡萄酒winequality-white.csv数据集,在本数据集提供了有关红葡萄酒和白葡萄酒的样本信息。每种样本都由专家做了质量评级,并进行了理化指标检验,包含有如下12个特征,最后一列表示质量特征:
fixed acidity 固定酸度
volatile acidity 挥发性酸度
citric acid 柠檬酸
residual sugar 残糖
chlorides 氯化物
free sulfur dioxide 游离二氧化硫
total sulfur dioxide 总二氧化硫
density 密度
pH pH值
sulphates 硫酸盐
alcohol 酒精度
quality 质量
在数据集中可以看出,经过葡萄酒专家的评估,可以将该酒的质量分为0 到 10 之间的得分,查阅资料得知,是葡萄酒专家至少3次评估取到的中值。

由于我们的源数

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

博客zhu虎康

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值