一个奇怪的电路分析:臭氧发生电路

简 介: 本文分析了一个臭氧发生器电路的工作原理。该电路利用晶闸管的特殊特性,通过220V交流电经二极管整流后,在晶闸管门极产生触发电压。当电压超过反向击穿值(约5V)时,晶闸管导通,使高压包原边产生脉冲电流,经升压后在副边放电。这种设计简化了电路成本,具体原理有待实验验证。文中还对比了普通臭氧发生器电路的工作方式。

关键词 臭氧发生器晶闸管

臭氧发生电路

 

01 氧发生电路


一、问题提出

  今天看到B站朋友提出一个有趣的电路问题。  他对于自己手边的臭氧发生器进行了拆解查看,  核心部分是一个高压发生器, 在玻璃管内产生放电。  电路板核心是一个三端器件, 根据器件上的文字,  可以查找这应该是一个小功率的晶闸管。  耐压为 400V,  工作电源 0.5A。  通过对它的背面电路分析,  可以逐步得到它的原理图。     将正面的元器件与背面的引线对照。  绘制出电路原理图。  那么问题来了,  可以看到电路高压包的原边与串联的电容连接在晶闸管的正负极。  但是, 220V的电源, 经过二极管施加在了晶闸管的正极和门极上面。 这个电路究竟是如何工作的呢? 也就它是如何让高压包原边产生震荡的呢?

G18M1755131093_1920_1080.MP4|_-18

二、普通电路

  可以在网络上找到很多这种建议臭氧发生器的电路。  大都利用高压包将脉冲电压升压进而产生放电。  一般情况下,  220V交流电经过二极管整流,通过电阻给电容充电。  当充电电压在晶闸管门极上的分压超过触发电压之后,  晶闸管突然导通, 于是在高压包原边产生脉冲电流,  经过升压之后, 在副边进行放电。  充电电阻一般选择比较大, 使得充电电流无法满足晶闸管的保持电流,  再加上高压包原边电感与放电电容的谐振, 从而会使得晶闸管截止。 这个过程重复下去, 产生震荡, 继而形成高压输出。

G10M1755132436_1920_1080.MP4|_-10

▲ 图1.1.1 普通臭氧发生器电路分析

▲ 图1.1.1 普通臭氧发生器电路分析

三、问题分析

  对于前面的电路,  正常电源通过二极管整流之后的电源给晶闸管进行出发。 在它的正负极之间没有充电回路。  那么问题来了,  这个电路中的LC回路是如何充电的呢?  这里面,就需要了解到晶闸管的一个不为人常知道的特性。  那就是,  他的阴极和门极之间, 实际上存在着反向击穿回路的。  也就是阴极的电压超过门极电压之后, 阴极电流就会流向门极。 系列HCR100的数据手册中,  给出了这个反向击穿电压。  这个反向击穿电压大约为 5V。

G13M1755133523_1920_1080.MP4|_-13

 

  结 ※


  文分析了B站朋友提出的一个有趣的臭氧发生器电路的问题。  初步猜测, 这个电路使用了晶闸管的门极反向导通机制, 进而形成了放电电容充电回路。  这种设计极大的简化了电路的成本。 置于是否分析成立, 将来再利用实验进行验证。

G4M1755133960_1920_1080.MP4|_-4


■ 相关文献链接:

● 相关图表链接:

资源下载链接为: https://pan.xunlei.com/s/VOYaD-317q743E_7bSEaLSmlA1?pwd=x8id 在 MAP 目标检测里,mAP 值(平均精度均值)是评估模型性能的关键指标,计算需按步骤开展。首先得明确几个基础概念,像真实框(标注的目标位置与类别)、预测框(模型输出的目标位置、类别及置信度),还有用于判断预测是否准确的 IOU(交并比)阈值,常用阈值为 0.5,也会根据需求调整。 接着进行正负样本判定。把模型输出的所有预测框按置信度从高到低排序,之后逐个与同类别真实框计算 IOU。若 IOU 大于设定阈值,且该真实框未被其他预测框匹配,这个预测框就判定为正样本(TP);若 IOU 小于阈值,或匹配的真实框已被占用,就判定为负样本(FP);没被任何预测框匹配的真实框,则视为漏检的正样本(FN)。 然后计算单类别的精度(Precision)和召回率(Recall)。精度是正样本数量除以正样本与负样本数量之和(TP/(TP+FP)),召回率是正样本数量除以正样本与漏检正样本数量之和(TP/(TP+FN))。通过调整置信度阈值,可得到多组精度和召回率数据,以召回率为横轴、精度为纵轴绘制 P-R 曲线,曲线下面积就是该类别的 AP 值(平均精度)。 最后计算 mAP 值,将所有类别的 AP 值求平均,结果就是 mAP 值。mAP 值越高,说明模型在各类别目标检测中的综合性能越好,能更准确地识别目标并减少漏检、误检情况。不同场景下可能会采用不同的 IOU 阈值计算 mAP,比如 [email protected] 表示 IOU 取 0.5 时的计算结果,[email protected]:0.95 则表示在 IOU 从 0.5 到 0.95、步长 0.05 的多个阈值下计算 AP 后再求平均,以此更全面地评估模型性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卓晴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值