HDR 视频肤色稳定:AE 曲线与 AWB 粘滞的协同设计
关键词:HDR 视频、Auto Exposure(AE)、Auto White Balance(AWB)、粘滞性(stability/stickiness)、肤色保护、HLG/PQ、面部ROI、亮度-色温联动、一次映射、Δh°/ΔE00、时域平滑、抗闪烁
摘要:
在移动端 HDR 视频中,肤色稳定性受 AE 曲线(亮度分配与高光保护)与 AWB 粘滞(色温/增益在时域的稳定)共同影响。若两者缺乏协同,会出现肤色跳变、白点漂移、肤色“塑料感”与高光断层等问题。本文面向研发,提出一套可工程落地的 AE×AWB 协同策略:以“中灰锚定 + 高光 roll-off”的 AE 曲线为主线,叠加“面部 ROI 权重 + 色温粘滞/惯性/滞回”的 AWB 控制;在 HLG/PQ 不同 EOTF 下给出参数化方案与时域滤波框架,并以 Δh°、ΔE00、Flicker 等量化指标做闭环评测与灰度发布。
目录
-
问题定义与目标
HDR 视频中肤色不稳的根因分解;研发侧需要的可量化目标与约束(功耗、时延、带宽)。 -
链路建模:AE 曲线×AWB 粘滞的作用边界
PQ/HLG 下的中灰锚定与高光 roll-off;AWB 增益与白点约束;面部 ROI 融合与一次映射原则。 -
AE 曲线设计:面向肤色的亮度分配
面部优先权重、局部高光保护、APL 自适应;滚动快门/频闪环境下的抗闪烁曝光策略。 -
AWB 粘滞策略:色温/增益的时域稳定
粘滞窗口、滞回(Hysteresis)、双时间常数(快/慢通道)、异常值剔除与面部 ROI 主导的白点收敛。 -
协同控制:AE→AWB 的前馈与 AWB→AE 的反馈
亮度-色温联动图与参数接口;在场景转移/光源切换时的过渡曲线与限速器(Rate Limiter)。 -
肤色保护:Hue 带限与高光减饱和在 HDR 工作流中的位置
OKLCh/IPT 空间的 Δh° 限幅;PQ/HLG 下的高光减饱和与一次映射配合。 -
评测体系:Δh°/ΔE00/Flicker 的主客观一致性
样本集构成、ROI 标注、时序一致性指标;通过/失败门限与灰度策略。 -
工程落地与常见问题
端侧实现建议(瓦片化、低时延路径、功耗护栏)、参数版本化与回滚;故障模式(二次映射、白点漂移、肤色跳变)与排查。
1. 问题定义与目标
在 HDR 视频中,肤色稳定意味着:在不同光源与动态场景下,肤色色相(Hue)与明度/饱和(L/C)随时间变化可控,不因 AE(自动曝光)与 AWB(自动白平衡)相互牵扯而产生“跳色、泛塑料、忽冷忽暖”。根因通常来自三处耦合:
1)AE 曲线的中灰锚定与高光 roll-off 影响人脸 ROI 的亮度分配;
2)AWB 增益改变 RGB 通道能量分布,反过来影响 AE 的统计;
3)EOTF(PQ/HLG)与一次映射位置决定“先映射还是先增益”,稍有不慎就会二次映射或白点漂移。
1.1 可量化目标(研发门限)
指标 | 口径 | 目标(建议) |
---|---|---|
Δh°(肤色 P95) | OKLCh/IPT ROI,时序 1s 滑窗 | ≤ 3.5° |
ΔE00(肤色 P95) | CIEDE2000 | ≤ 3.0 |
亮度相对误差 ΔL_rel(人脸 ROI) | 与设定曝光点对比 | ≤ 3% |
Flicker-L(灰卡/肤 ROI) | 帧间低通 RMSE | ≤ 0.02 |
AE/AWB 收敛时间 | 从场景变化到稳定 | ≤ 12–20 帧(30/60 fps) |
端到端时延预算 | 统计→决策→应用 | ≤ 1 帧(优先单帧内闭环) |
指标用作回归门与灰度发布触发条件,后续章节给出评测流程。
1.2 系统组件(UML 组件/类图)
1.3 每帧控制环(UML 时序图)
1.4 失配来源(活动图:诊断思路)
flowchart TD
A[肤色不稳] --> B{Δh° 超阈?}
B -- 是 --> B1[AWB 粘滞过低/无滞回]
B -- 否 --> C{ΔL_rel 超阈?}
C -- 是 --> C1[AE 曲线锚不一致/二次映射]
C -- 否 --> D{Flicker 超阈?}
D -- 是 --> D1[频闪防护失效/积分窗太短]
D -- 否 --> E[检查 ROI 权重与人脸误检]
2. 链路建模:AE 曲线 × AWB 粘滞的作用边界
目标:把 AE 与 AWB 的数学对象与耦合点讲清楚,明确“谁先谁后”“谁影响谁”,从而给协同设计提供可调参数。
2.1 AE 曲线(HDR 友好的曝光函数)
-
中灰锚定:令线性亮度 x a = 0.18 x_a=0.18 xa=0.18 在映射后仍为 y a = 0.18 y_a=0.18 ya=0.18。
-
高光 roll-off: [ x s , x e ] [x_s,x_e] [xs,xe] 内压缩,避免人脸高光“爆白”。
-
抗频闪:曝光时间 t t t 贴近电网周期(50/60Hz)的整数分数,优先用 ISO 微调。
-
目标函数(示意):
KaTeX parse error: Undefined control sequence: \* at position 5: EV^\̲*̲=\arg\min_{EV}\…
其中 L t L_{t} Lt 为面部目标亮度(随 APL/肤色反射率微调)。
AE 决策流程(UML 活动图)
flowchart TD
S[直方图/人脸ROI/APL/频闪] --> A[计算目标亮度 Lt]
A --> B{频闪风险?}
B -- 是 --> B1[限制 t= n/100(或120) s; 以 ISO 调节]
B -- 否 --> C[EV 候选生成]
C --> D[roll-off 约束下求解 EV*]
D --> E[限速器(每帧步进≤ΔEVmax)]
2.2 AWB 粘滞(白点估计与时域稳定)
-
白点估计:在 肤色 ROI + 灰/白参考上求解白点 W = ( R , G , B ) W=(R,G,B) W=(R,G,B),可在 LMS/XYZ 空间做约束。
-
粘滞/滞回:对色温/偏绿轴引入双时间常数与滞回带,抑制抖动:
g t = α slow ⋅ g t − 1 + ( 1 − α slow ) ⋅ g ^ t , g t fast = α fast ⋅ g t − 1 + ( 1 − α fast ) ⋅ g ^ t g_{t}=\alpha_{\text{slow}}\cdot g_{t-1}+(1-\alpha_{\text{slow}})\cdot \hat{g}_{t},\quad g_{t}^{\text{fast}}=\alpha_{\text{fast}}\cdot g_{t-1}+(1-\alpha_{\text{fast}})\cdot \hat{g}_{t} gt=αslow⋅gt−1+(1−αslow)⋅g^t,gt