HDR 视频肤色稳定:AE 曲线与 AWB 粘滞的协同设计

HDR 视频肤色稳定:AE 曲线与 AWB 粘滞的协同设计

关键词:HDR 视频、Auto Exposure(AE)、Auto White Balance(AWB)、粘滞性(stability/stickiness)、肤色保护、HLG/PQ、面部ROI、亮度-色温联动、一次映射、Δh°/ΔE00、时域平滑、抗闪烁

摘要
在移动端 HDR 视频中,肤色稳定性受 AE 曲线(亮度分配与高光保护)与 AWB 粘滞(色温/增益在时域的稳定)共同影响。若两者缺乏协同,会出现肤色跳变、白点漂移、肤色“塑料感”与高光断层等问题。本文面向研发,提出一套可工程落地的 AE×AWB 协同策略:以“中灰锚定 + 高光 roll-off”的 AE 曲线为主线,叠加“面部 ROI 权重 + 色温粘滞/惯性/滞回”的 AWB 控制;在 HLG/PQ 不同 EOTF 下给出参数化方案与时域滤波框架,并以 Δh°、ΔE00、Flicker 等量化指标做闭环评测与灰度发布。


目录

  1. 问题定义与目标
    HDR 视频中肤色不稳的根因分解;研发侧需要的可量化目标与约束(功耗、时延、带宽)。

  2. 链路建模:AE 曲线×AWB 粘滞的作用边界
    PQ/HLG 下的中灰锚定与高光 roll-off;AWB 增益与白点约束;面部 ROI 融合与一次映射原则。

  3. AE 曲线设计:面向肤色的亮度分配
    面部优先权重、局部高光保护、APL 自适应;滚动快门/频闪环境下的抗闪烁曝光策略。

  4. AWB 粘滞策略:色温/增益的时域稳定
    粘滞窗口、滞回(Hysteresis)、双时间常数(快/慢通道)、异常值剔除与面部 ROI 主导的白点收敛。

  5. 协同控制:AE→AWB 的前馈与 AWB→AE 的反馈
    亮度-色温联动图与参数接口;在场景转移/光源切换时的过渡曲线与限速器(Rate Limiter)。

  6. 肤色保护:Hue 带限与高光减饱和在 HDR 工作流中的位置
    OKLCh/IPT 空间的 Δh° 限幅;PQ/HLG 下的高光减饱和与一次映射配合。

  7. 评测体系:Δh°/ΔE00/Flicker 的主客观一致性
    样本集构成、ROI 标注、时序一致性指标;通过/失败门限与灰度策略。

  8. 工程落地与常见问题
    端侧实现建议(瓦片化、低时延路径、功耗护栏)、参数版本化与回滚;故障模式(二次映射、白点漂移、肤色跳变)与排查。

1. 问题定义与目标

在 HDR 视频中,肤色稳定意味着:在不同光源与动态场景下,肤色色相(Hue)明度/饱和(L/C)随时间变化可控,不因 AE(自动曝光)与 AWB(自动白平衡)相互牵扯而产生“跳色、泛塑料、忽冷忽暖”。根因通常来自三处耦合:
1)AE 曲线的中灰锚定与高光 roll-off 影响人脸 ROI 的亮度分配;
2)AWB 增益改变 RGB 通道能量分布,反过来影响 AE 的统计;
3)EOTF(PQ/HLG)与一次映射位置决定“先映射还是先增益”,稍有不慎就会
二次映射
白点漂移

1.1 可量化目标(研发门限)

指标 口径 目标(建议)
Δh°(肤色 P95) OKLCh/IPT ROI,时序 1s 滑窗 3.5°
ΔE00(肤色 P95) CIEDE2000 3.0
亮度相对误差 ΔL_rel(人脸 ROI) 与设定曝光点对比 3%
Flicker-L(灰卡/肤 ROI) 帧间低通 RMSE 0.02
AE/AWB 收敛时间 从场景变化到稳定 12–20 帧(30/60 fps)
端到端时延预算 统计→决策→应用 1 帧(优先单帧内闭环)

指标用作回归门灰度发布触发条件,后续章节给出评测流程。

1.2 系统组件(UML 组件/类图)

Sensor
+readout() : Frame
ISP
+mergeHDR() : LinearRGB
+stats()
AEController
+setpoint: float // 0.18 中灰锚
+rollOff(start,end)
+flickerGuard()
+solveEV()
AWBController
+out: gainsRGB
+estimateWP() // 白点估计(ROI/灰卡/环境)
+stickiness()
+dualTC()
ROIEngine
+faceDetect()
+skinMask()
+weights()
ToneMapper
+onceMapping()
HueSatGuard
+hueBandLimit()
+highlightDesat()
Orchestrator
+frameLoop()
+feedforwardAE2AWB()
+feedbackAWB2AE()

1.3 每帧控制环(UML 时序图)

Sensor/ISP ROIEngine AEController AWBController Orchestrator ToneMapper HueSatGuard 线性帧 + 统计(直方图/MaxRGB/APL/人脸框) 1 人脸权重/APL/频闪标记 2 肤色 ROI / 参考白点候选 3 EV_solve (锚 0.18 + roll-off + 抗频闪) 4 前馈(期望 Luma, 目标 APL) 5 粘滞后的 gains(R,G,B) + 白点 6 反馈(白点变化幅度/允许曝光步进) 7 应用 EV 与 AWB 增益(先后固定,避免二次映射) 8 Hue 带限 + 高光减饱和(仅色彩保护,不改亮度) 9 Sensor/ISP ROIEngine AEController AWBController Orchestrator ToneMapper HueSatGuard

1.4 失配来源(活动图:诊断思路)

flowchart TD
  A[肤色不稳] --> B{Δh° 超阈?}
  B -- 是 --> B1[AWB 粘滞过低/无滞回]
  B -- 否 --> C{ΔL_rel 超阈?}
  C -- 是 --> C1[AE 曲线锚不一致/二次映射]
  C -- 否 --> D{Flicker 超阈?}
  D -- 是 --> D1[频闪防护失效/积分窗太短]
  D -- 否 --> E[检查 ROI 权重与人脸误检]

2. 链路建模:AE 曲线 × AWB 粘滞的作用边界

目标:把 AE 与 AWB 的数学对象耦合点讲清楚,明确“谁先谁后”“谁影响谁”,从而给协同设计提供可调参数。

2.1 AE 曲线(HDR 友好的曝光函数)

  • 中灰锚定:令线性亮度 x a = 0.18 x_a=0.18 xa=0.18 在映射后仍为 y a = 0.18 y_a=0.18 ya=0.18

  • 高光 roll-off [ x s , x e ] [x_s,x_e] [xs,xe] 内压缩,避免人脸高光“爆白”。

  • 抗频闪:曝光时间 t t t 贴近电网周期(50/60Hz)的整数分数,优先用 ISO 微调。

  • 目标函数(示意):

    KaTeX parse error: Undefined control sequence: \* at position 5: EV^\̲*̲=\arg\min_{EV}\…

    其中 L t L_{t} Lt 为面部目标亮度(随 APL/肤色反射率微调)。

AE 决策流程(UML 活动图)

flowchart TD
  S[直方图/人脸ROI/APL/频闪] --> A[计算目标亮度 Lt]
  A --> B{频闪风险?}
  B -- 是 --> B1[限制 t= n/100(或120) s; 以 ISO 调节]
  B -- 否 --> C[EV 候选生成]
  C --> D[roll-off 约束下求解 EV*]
  D --> E[限速器(每帧步进≤ΔEVmax)]

2.2 AWB 粘滞(白点估计与时域稳定)

  • 白点估计:在 肤色 ROI + 灰/白参考上求解白点 W = ( R , G , B ) W=(R,G,B) W=(R,G,B),可在 LMS/XYZ 空间做约束。

  • 粘滞/滞回:对色温/偏绿轴引入双时间常数滞回带,抑制抖动:

    g t = α slow ⋅ g t − 1 + ( 1 − α slow ) ⋅ g ^ t , g t fast = α fast ⋅ g t − 1 + ( 1 − α fast ) ⋅ g ^ t g_{t}=\alpha_{\text{slow}}\cdot g_{t-1}+(1-\alpha_{\text{slow}})\cdot \hat{g}_{t},\quad g_{t}^{\text{fast}}=\alpha_{\text{fast}}\cdot g_{t-1}+(1-\alpha_{\text{fast}})\cdot \hat{g}_{t} gt=αslowgt1+(1αslow)g^t,gt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

观熵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值