【CVPR 2024】HumanRef: Single Image to 3D Human Generation via Reference-Guided Diffusion

前言

Jingbo Zhang, Xiaoyu Li, Qi Zhang, Yanpei Cao, Ying Shan, Jing Liao

【Paper】 > 【Github_Code】 > 【Project】
HumanRef 引入了一种称为参考引导分数蒸馏采样 (Ref-SDS) 的新颖方法,该方法有效地将图像引导纳入生成过程。此外,我们将区域感知注意力引入 Ref-SDS,确保不同身体区域之间的准确对应。

Abstract

现有问题:从单个参考图像生成 3D 人体模型具有挑战性,因为它需要在不可见视图中推断纹理和几何形状,同时保持与参考图像的一致性。以前利用 3D 生成模型的方法受到 3D 训练数据可用性的限制。将文本到图像扩散模型提升到 3D 生成的基于优化的方法通常无法保留参考图像的纹理细节,从而导致不同视图中的外观不一致。
方法介绍:在本文中,我们提出了 HumanRef,一种基于单视图输入的 3D 人体生成框架。为了确保生成的 3D 模型逼真且与输

### CVPR 2024 MedM2G Paper Overview The paper titled "MedM2G: Unifying Medical Multi-Modal Generation via Cross-Guided Diffusion with Visual Invariant" introduces a novel approach to unify medical multi-modal generation using cross-guided diffusion models that incorporate visual invariants[^1]. This method aims at improving the consistency and quality of generated medical data across different modalities, which is crucial for various applications such as diagnosis support systems. #### Key Contributions - **Cross-Guided Diffusion Framework**: A framework designed specifically for generating high-quality medical images by leveraging information from multiple sources or views. - **Visual Invariance Integration**: Ensures that the generative model can produce results invariant under certain transformations while preserving key anatomical features essential for clinical interpretation. - **Unified Approach**: Proposes an integrated solution capable of handling diverse types of medical imaging tasks within one cohesive system rather than requiring separate models per task. #### Methodology To achieve these goals, MedM2G employs advanced techniques including but not limited to: - Utilizing pre-trained networks pretrained on large-scale datasets like ImageNet for feature extraction purposes before feeding into the main architecture. - Implementing conditional variational autoencoders (cVAEs) alongside GANs to ensure both diversity and fidelity in synthesized outputs. ```python import torch.nn as nn class MedM2G(nn.Module): def __init__(self): super(MedM2G, self).__init__() # Define layers here based on cVAE and GAN architectures def forward(self, x): # Forward pass implementation goes here return output ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旋转的油纸伞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值