最近半年,MCP(Model Context Protocol)成了AI圈里的热词,写文案、画图、调代码,各种视频演示天花乱坠、社交平台上热度也居高不下。
甚至有人会问,借助MCP以后是不是完全不用掌握任何专业操作,就能在生产场景使用Zilliz Cloud或者Milvus了?
在我们内部推出了四个MCP产品,也成为MCP的深度用户之后,我们的答案是,有这个可能,但不是现在。
四个MCP的链接如下:
Zilliz MCP Server项目地址:
https://github.com/zilliztech/mcp-server
教程链接:见本文最后
mcp-server-milvus项目地址:
https://github.com/zilliztech/mcp-server-milvus
教程链接: Function Calling已经过时 ,MCP才是真正的大模型接口标准
Milvus Code Helper MCP(待开源)项目教程:Cursor也会犯错?Milvus如何用MCP+RAG解决AI Coding生成过时代码的问题
CodeIndexer项目地址:
https://github.com/zilliztech/CodeIndexer
当前的MCP工具体系,在80%的情况下,都不适合用在实际的专业级生产(至于20%的例外是什么,我们会在后文详细解读)。
接下来,我们会结合我们的观察总结以及我们在Zilliz MCP 的实践来做一个分析。
01 为什么说MCP短期被过度炒作了?
这里我们先照例科普一下什么是MCP。
MCP即Model Context Protocol(模型上下文协议),是一种客户端-服务器的开放架构。可以理解为给大模型与工具都加上了标准化接口,从而实现一次开发,多个工具和模型兼容。过去为N个模型接入M个服务对接需要N*M次开发,通过MCP,可以只要N+M次开发就能解决问题。
这种接口标准化带来的优势很明确:开发成本降低,大模型的工具使用能力增加,过去一些繁琐专业的操作,可以借助大模型以自然语言交互的方式来完成。
看起来很完美。
但现实中,MCP距离落地专业生产场景,尤其对于那些对精确操作和强鲁棒性有要求的工业级工具链,仍有不小距离。
举几个现实中的例子就知道问题所在了:
机械设计中的SolidWorks:通常来说,在SolidWorks中设计一个复杂的联动组件,会涉及零件约束、干涉校验和参数关联,每一步的精准操作都至关重要。但很显然,让大模型配合MCP来进行建模和调参,模型或许可以理解这些术语,但很难精准地复现设计意图。
芯片设计的EDA流程:从RTL到后端物理实现,这一过程中涉及到数十个工具的串联,时序、功耗、面积等目标的多维优化,每一步都依赖着工程师的微操。这时候,MCP和大模型的结合能理解这些工具之间的因果链条,做实时的调优吗?答案是否定的。
RAG中的向量数据库应用:看起来,我们只要让大模型创建集合,然后查找就能完成任务。但问题是,创建多大的集合,选型有容量型、均衡型多种类型,到底用哪一个?
一方面,模型本身对于人类意图的精准理解,仍有局限,且对高质量提示词有相当大的依赖。
另一方面,专业软件背后是行业积淀与大量“know-how”的结果,其操作命令、按钮、操作逻辑本身已经包含了大量高级抽象,自然语言很难超越,大模型往往知其然(按钮的作用)却不知其所以然(如何组合按钮与参数给出最优组合排列)。
更直白来说,MCP本身很好,但大模型在精准理解人类意图环节就出了问题,或者大模型本身在执行过程中有幻觉,那MCP自然也无法满足需求。
02 MCP当下的甜蜜点在哪里
既然排除了短期内用MCP完成精密复杂操作的可能性,那么,MCP当下的甜蜜点在哪里?
在我们看来,满足以下两个条件之一的MCP工具链会更早爆发:
结果唯一、过程链路清晰,比如:帮我找到全网最便宜的苹果手机,帮我查询现在的Milvus集群状态。
可接受“混沌”结果,比如:帮我设计一个小猫的3D模型,但是对结果是奶牛猫还是橘猫并无特殊要求。
而满足以上特点的场景,以下三种是典型代表:
创意挖掘、思路启发,比如:让大模型-MCP-工具,生成100个创意图,给创作者带来一些启发(结果混沌类型)。
可批量交付的简单场景,比如:让大模型-MCP-工具,挖掘全网最火的文章或者服装,提炼关键词(过程与结果唯一)。
复杂工具的轻度交互或快速上手体验,比如:Zilliz Cloud、PS、AE等专业工具,用户可以通过自然语言生成脚本、配置模板,降低学习门槛(结果混沌类型)。
总而言之,我们可以将MCP工具链当成一个24小时无休执行力超强的行业入门级实习生。至于专业级操作,还是需要专业的人来完成。
03 Zilliz MCP Server是什么,要如何使用?
明确了以上共识之后,我们基于Zilliz Cloud推出了Zilliz MCP Server,希望为对向量数据库感兴趣、有需求的新手朋友或者轻量级用户,提供一个能低门槛上手的工具。
Zilliz MCP Server 原生支持 MCP 标准,让开发者能够在 Claude、Cursor、Windsurf 等 AI 应用中,忘记繁琐的操作界面和复杂的查询语法,用自然语言轻松执行数据库操作。
目前Zilliz MCP Server已经支持集群管理、资源监控,到集合创建、向量搜索、数据插入和混合查询的全套功能。
例如,我们只需一句话:
“创建一个用于存储 512 维图像嵌入的集合。”
或者:
“展示我的集群的性能指标。”
Zilliz MCP Server 就会完成剩下的全部工作:解析请求、管理连接与权限,并以 AI 助手能够理解的格式返回结果。
其特性有三:
支持多语言的自然语言操作:目前已经支持使用英语、中文、西班牙语等语言与数据库交互,例如:“查找与该产品描述相似的文档” 或 “创建一个存储 512 维图像嵌入的集合”,“创建一个免费的 Milvus 集群”,用户无需打开控制台,也不需要配置细节,即可获得即用型数据库实例。
可以简化数据库管理:只需一句话,“创建一个免费的向量数据库集群” 或 “展示集群性能指标”,即可自动完成配置和部署,实时获取性能可视化,无需登录监控平台。
可以实现具备上下文感知的代码生成:根据实际数据库结构,自动生成匹配特定业务需求的完整应用逻辑。让非专业人员也能轻松使用向量数据库
过去,向量数据库主要面向机器学习和数据科学专家。但借助 Zilliz MCP Server,无需掌握嵌embedding模型、相似度计算或查询语法,只需用自然语言即可完成复杂的操作。
比如,产品经理可以用其分析用户行为,设计师可以用其探索内容相似性,前端开发者可以用其测试搜索功能……
那么,如何快速上手 Zilliz MCP Server?只需三步:
第一步:注册或登录 https://zilliz.com/
第二步:安装并运行 Zilliz MCP Server,链接:
https://github.com/zilliztech/zilliz-mcp-server
第三步:配置您的 AI 助手(如 Claude、Cursor、Windsurf 等)
完成设置后,即可通过自然语言创建集合、插入向量、构建语义搜索,全面体验下一代对话式数据库开发方式。
尾声
前面说了这么多,并不是要一棒子打死所有MCP平台。毕竟,MCP在降低复杂工具的使用门槛,以及模块化、灵活性上具备无可比拟的优势。
只是,在使用MCP的过程中,还是要先想清楚自己的业务是否适合,以及我们对MCP的期待究竟是什么。
毕竟,牛很少累死,但很容易被吹死。对待新技术,多一点脚踏实地,少一点炒作,终归是没错的。
推荐阅读
全面测评Claude Code vs Gemini CLI:自然语言编程的时代真的来了
热点|Anthropic vs Devin:成本15倍换90%性能提升,Multi-Agent没有未来?