LLM、RAG、workflow、Agent,大模型落地该选哪个?一个决策矩阵讲透

搞大模型落地,谁还没几个崩溃时刻了?这份保命指南请收好:

效果要显贵,基础款就不要再搭基础款

模型基础,数据就不基础;

架构基础,infra就不基础;

场景基础,方案就不基础;

如果全都基础,那甩锅就不基础……

但问题来了,关于落地方案选型,最近一年多,关于 LLM、RAG、workflow、agent、multi - agent孰优孰劣,各方观点吵得可谓是天翻地覆:

围绕大模型上下文窗口持续扩容RAG 是否已失去存在价值 ?

围绕模型工具调用能力,LangChain 更相信 workflow 架构的可控性优势; OpenAI 力推 agent 的自主决策潜力谁说的对?

围绕agent 落地的技术路线,Devin(Cognitio 旗下自动编程软件)公开质疑 OpenAI、微软、Anthropic 推崇的 multi - agent 路线看似高级,实则是不可控性、上下文冗余与错误累加的代名词。

事实上,所有争论都可以概括为不能通用化与专业化、自主性与可控性、成本与性能,全都既要又要:

简单场景,就别嫌弃workflow不够酷

三个文档,就没必要费劲做个RAG

业务流程严谨,就别总想做个高级agent整花活儿……

那么 LLM、RAG、workflow、agent、multi - agent 这几大方案,在落地中,究竟该如何选?

在本文中,我们将结合场景指标与决策框架,为大家做出系统解读。

01

大模型上下文 还是 RAG?

看你的数据体量与来源

矛盾:大模型的长上下文能力增加,是否不再需要外部知识检索?

痛点:模型推理耗时过长、成本高昂、数据体量有限的问题,且存在数据安全隐患。难以实现多租、海量数据管理等难题。

一句话结论:两大方案互补,数据量大、需实时更新、数据隐私性强或有细粒度权限管控时优先选 RAG,单篇长文档处理且成本不敏感可短期依赖长上下文模型。

RAG 技术(检索增强生成)的核心价值在于打破大模型内存限制,通过外部数据检索为模型提供实时、专业、海量的知识支撑。精准解决了大模型幻觉、时效性差、专业知识不足三大核心痛点

但随着大模型的上下文长度不断增加,尤其随着 GPT - 5 将上下文拓展到 400k,RAG 消亡论的说法,再次抬头。

其逻辑在于,大模型已是强大检索器,何必再构建弱小检索器?

但一定程度上,RAG 与长上下文大模型并非替代关系,而是互补关系,其核心差异体现在数据特性与场景需求的匹配上:

从数据特性看,非结构化数据的 4V 特性(Volume 大量、Velocity 高速、Variety 多样、Value 价值)决定了单一方案难以应对。

原因如下:

  • 计算量爆炸:首先,长上下文大模型的秒级响应仍是技术难题 —— 基于 transformer 的架构导致计算量随上下文长度呈二次增长,400k token 推理耗时远超实用阈值;

  • 成本门槛极高:按当前定价,GPT - 5 处理 400k token 的单次推理成本远远高于普通 RAG 方案,日常高频场景根本无法承受;

  • 数据体量:再者,数据体量差距悬殊,1000 万 token 仅能容纳约 500 本畅销书内容,而企业知识库、互联网索引的数据量往往以 PB 级计,不可能全部灌入模型。

因此,从场景需求看,RAG 在三类场景中不可替代:

一是实时性场景,如金融资讯生成需对接股市实时数据,RAG 可实现秒级检索更新;

二是专业领域场景,如医疗诊断需调用最新临床指南,RAG 能精准定位专业文献片段;

三是数据敏感场景,企业内部文档需权限管控,RAG 可通过检索权限隔离实现数据安全访问,而长上下文模型无法灵活控制数据可见范围。

落地决策指标:当数据量超过 100 万 token、需实时更新、存在细粒度权限管控需求时,优先选择 RAG;若仅是处理单篇长文档(如万字报告分析)且对成本不敏感,可短期依赖长上下文大模型。

02

workflow VS agent

可控与自主只能二选一

矛盾:Workflow 的 流程确定性”与 Agent 的 决策灵活性之间的取舍。

痛点:纯 Workflow 难以应对动态多变的需求场景,易陷入流程卡顿;纯 Agent 存在上下文失控风险,高精度场景中错误率较高。

一句话结论:混合架构为最优解,标准化场景用纯 Workflow,半标准化场景用 “Workflow + Agent” 混合架构,创新探索场景用纯 Agent 搭配人工审核。短期内多数需求可以用Workflow 搞定。

围绕 workflow 还是 agent,langchain与OpenAI的整理,我们的历史文章已经做过梳理,可以参考Langchain 吐槽OpenAI根本不懂 AI agent和workflow?知识点全解析

两者的共同目标都是让模型高效利用工具,区别则在于是解决 流程确定性 还是保持 决策灵活性,因此,问题的核心在于如何在不同场景中平衡这两者的关系。

OpenAI 的 Agent 方案强调 自主决策优先,其 “单一智能体 + 工具扩展” 模式开发门槛极低 —— 开发者调用预封装 Agent 类,几行代码即可实现天气查询、邮件发送等工具调用功能。

这种方案的优势在于灵活应对未知场景,例如智能助手在处理用户模糊需求(帮我安排下周适合出差的时间)时,能自主判断需要调用日历、天气、航班等工具并规划步骤。

但缺陷也很明显:过度抽象导致上下文失控,当系统消息缺失关键约束时,工具调用准确率甚至会出现断崖式暴跌,在金融交易等高精度场景中风险极高。

LangChain 倡导的 Workflow 方案则侧重 流程可控优先,通过预定义代码路径编排工具调用顺序。例如电商客服退款流程,Workflow 可固定 “查询订单→验证权限→发起退款→发送通知” 四步流程,确保每步操作可追溯、可回滚。

这种方案在标准化场景中稳定性极强,但面对多变需求时灵活性不足 —— 若用户临时提出 先换货再退款,固定流程可能陷入卡顿。

因此,多数场景中,混合架构才是最优解:在 流程前置环节 用 Workflow 保证确定性,在 决策核心环节,则可以 用 Agent 提升灵活性。

以智能客服为例,可通过 Workflow 实现 “用户提问→意图识别→任务分配” 的标准化分流,再让 Agent 处理具体任务中的动态决策(如 根据用户历史订单推荐退款方案),依此降低人工干预频率,兼顾稳定可控与场景适应能力。

落地决策框架:按场景标准化程度分级选择 —— 标准化场景(如发票验真、物流查询)用纯 Workflow;半标准化场景(如客服问题处理)用 “Workflow + Agent” 混合架构;创新探索场景(如科研实验设计)用纯 Agent,并搭配人工审核机制。

03

传统agent VS multi - agent

团队配合容易变成团伙作案

矛盾: multi - agent 的 复杂任务处理能力 与 不可控性及高成本 之间的权衡矛盾。

痛点: multi - agent存在错误传导效应易导致系统崩溃,token 消耗高使成本剧增,子任务耦合度高时协作效率大幅下降。

一句话结论: 满足 可拆解、可验证、成本可控 三可条件时可尝试 multi - agent,否则优先选择传统 Agent 方案。

一句话概括,multi - agent做好了,就是团队配合,做不好了,就是团伙作案。

multi - agent 的核心价值是通过分工协作解决单智能体无法完成的复杂任务,但这一优势的背后暗藏 不可控性 与 高成本 两大陷阱。

巨头们推崇 multi - agent 的逻辑在于 复杂任务拆解能力:大型项目管理中,可拆解出资源分配、进度跟踪、风险评估等子任务,由不同 Agent 各司其职。

Anthropic 内部测试显示,其多智能体系统在复杂任务处理上比单智能体 Claude Opus 4 表现高出 90.2%。这种方案在任务可拆解、子任务边界清晰的场景中效率显著,例如电影制作可分为剧本生成、分镜设计、角色配音等独立子任务,由专业 Agent 协作完成。

但 Devin 联合创始人的吐槽直指要害:multi - agent 的 “错误传导效应” 可能导致系统崩溃。当一个 Agent 输出错误结果(如财务 Agent 误算成本),后续 Agent 会基于错误数据继续决策,最终引发连锁失误。此外,成本问题极为突出 ——Cognitio 数据显示,多智能体系统的 token 消耗是单智能体的 15 倍,在日均百万级交互的场景中,年成本可能相差上千万元。

落地红线标准:当任务满足 “三可” 条件 —— 可拆解(子任务间耦合度越小越好)、可验证(每个子任务结果可独立校验)、成本可控(预期 ROI够高,可以打平token消耗成本)时,可尝试 multi - agent;反之,若任务逻辑连贯(如代码调试)、错误容忍度低(如医疗诊断),则优先选择单 Agent 方案。

04

落地选择的综合决策矩阵

所有决策问题,都可被概括为综合通用化与专业化、自主性与可控性、成本与性能的较量,我们的决策可以参考下表:

最终决策路径则可以参考

  1. 明确核心需求:是解决知识准确性问题(选 RAG)、流程标准化问题(选 Workflow),还是复杂决策问题(选 Agent/multi - agent)?

  2. 评估约束条件:数据量是否超过模型承载能力?成本预算是否支持高 token 消耗?错误容忍度是否允许自主决策偏差?

  3. 选择混合方案:多数场景需组合技术,例如 “LLM + RAG + Workflow” 可实现专业知识检索 + 标准化流程;“Agent + Workflow” 可实现动态决策 + 关键节点管控。

技术落地没有万能方案,适合的才是最好的。

但如果甲方、领导,总是既要还要,那记住开头那句话,如果全都基础,那甩锅就不基础……

推荐阅读

Manus、LangChain一手经验:先别给Multi Agent判死刑,是你不会管理上下文

实测|OpenAI开源模型GPT-oss VS o4-mini,手机能跑,但没复现DeepSeek时刻

GPT-5深度实测| 挤牙膏、低情商,但编程效果起飞

好未来×Milvus:向量数据库如何搞定在线教育的题库推荐问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值