【NLP】带你认识经典的序列模型-HMM与CRF

本文介绍了HMM(隐马尔科夫模型)和CRF(条件随机场)在自然语言处理中的应用,包括它们的输入输出、作用、使用过程以及两者之间的差异。HMM常用于文本序列标注,如分词和词性标注,但受限于隐马假设,其准确率在某些场景下低于CRF。CRF不依赖隐马假设,能处理更复杂的序列关系,但在计算速度上较慢。随着深度学习的发展,HMM和CRF的应用逐渐减少,但了解这些经典模型的基础知识仍然重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. HMM模型

1.1 HMM模型的输入和输出

HMM(Hidden Markov Model), 中文称作隐含马尔科夫模型, 因俄国数学家马尔可夫而得名. 它一般以文本序列数据为输入, 以该序列对应的隐含序列为输出.

什么是隐含序列:

  • 序列数据中每个单元包含的隐性信息, 这些隐性信息之间也存在一定关联.

举个栗子:

给定一段文本: "人生该如何起头"

我们看到的这句话可以叫做: 观测序列

我们可以将这句话以词为单位进行jieba划分得到:

["人生", "该"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

chaser&upper

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值