基于光强传输方程离散余弦变换求解的数字全息相位解调方法

在众多干涉测量应用中,例如数字全息[1- 5] 、合成 孔径雷达[6- 8] 、磁共振成像[9] 和条纹投影轮廓仪[10- 11] 等, 由于检索到的相位被包裹到区间[−π,π]之间,必须 通过相位解包裹(PU)才能获得真实的连续相位分布。 在过去的几十年中,已经提出了很多 PU 方法,可将其分为两类:时间[12- 16] 和空间方法[17- 29] 。时间方法,如多 频方法[13- 14] 和外差方法[15- 16] ,PU 相位图是随时间变化 来获取,并且不需要相邻像素信息,因此可以避免缠绕 相位缺陷的影响,但是这些方法需要较多包裹相位或 多频条纹图。空间方法利用空间信息展开相位,与时 间方法相比约束条件更少。其中路径跟踪方法通过解 决 路 径 积 分 问 题 来 展 开 相 位 图[17- 20],例 如 分 支 方法[19- 22] 、质量引导路径跟踪(QGPF)方法[21- 22] 和掩码 切割算法[23] 。路径跟踪方法采用的是逐点比较法,对 于理想条件,该方法是有效的,它的计算量小、效率 高。但是,如果存在噪声或相位跳跃,这些方法可能 会在展开的相位图上带来条纹噪声;此外,由于 PU 过 程依赖于积分路径,结果并不唯一[18] 。最小范数方法 是另一种类型的空间解调方法[21- 27] ,它擅长处理带有 噪声或相位跳跃的展开相位图[29] 。局部噪声可以通 过 最 小 化 定 义 的 误 差 度 量 来 过 滤 。 最 小 二 乘 方 法 (LS)是最常用的最小范数 PU 方法之一。它通过泊 松方程将包裹相位的梯度与绝对相的相位关联,然后 利用展开结果的导数与包裹相位数据之间的差异来 获得展开相位图。研究学者提出了诸多方法来提高 LS 方法的效率,例如基于傅里叶变换的 LS 方法[24] 、 基于离散余弦变换的 LS(DCTLS)方法[23] ,以及多重 网格方法[24] 。这些方法通常具有良好的鲁棒性,但有 时倾向于过度平滑相位图。为了克服这个缺陷,加权 最小二乘 PU 算法[26,29] 被提出。加权系数通常首先从 质量图中生成并用于相位展开过程,以限制来自平滑 效应带来的误差,该算法可以有效屏蔽无效相位数据 对邻近区域的不利影响,具有较好的稳定性。然而, 获得质量图和权重系数可能很耗时,这将限制 PU 方 法的实时应用。

近年来,为提高 PU 工艺的效率,新的技术已被引 用。CruzSantos 等[30] 引入了一种基于 redblack tree 数 据结构的新剪枝策略来加速 PU 过程,但应首先实施 一个额外的过程来获得数据结构。Kulkarni 等[31] 提出 了一种基于多项式相位逼近和线性卡尔曼滤波器的噪 声鲁棒 PU 算法。然而该方法使用了线扫描方法或像 素 选 择 的 质 量 引 导 策 略 。 张 祥 朝 等[32]将 非 下 采 样 Contourlet 变换应用于 PU 算法以提高鲁棒性,然而区 域分割必须在展开过程之前进行,必然会增加处理 时间

最近,学术界还提出了基于光强传输方程(TIE) 的 PU 方法[33- 35] 。它从强度信息中获得绝对相位图。 首先计算强度的轴向导数。然后将结果用作泊松方程 的输入,并且可以通过使用快速傅里叶变换(FFT)求 解方程来获得展开的相位图。基于 FFTTIE 的 PU 方法被证明是准确和快速的,但效率仍有提高空间。 文献[33- 35]提出将泊松方程用 Volkov 方案求解[36] , 该方法将相位图对称扩展,但处理时间也随之增加。 Zuo 等[37- 38] 在他们的出色工作中证明,用离散余弦变换 (DCT)并且利用硬边界条件(边界外光强为零)可以 检索 TIE 真实相位,并且不需要 Volkov 方案。本文将 这一研究成果引入到数字全息显微 PU 算法中,通过 模拟与实验数据测试,证明基于 DCTTIE 的数字全 息 PU 方法与传统的 FFT 算法效率更高。通过将边缘 部分反射(RMP)来扩展相位图,表明采用 RMP 方案 与 Volkov 方案相比可以更高的速度展开相位图,且不 损失精度。同时通过与传统的 DCTLS 全息相位解 调相比,表明该方法在处理相位剧烈变化的物体时具 有更强的鲁棒性。

2 基本原理

2. 1 TIE 原理简介

TIE 是一种非干涉测量光学相位检索的方法。根据文献[39- 40],在近菲涅耳衍射区,光波的强度(I)和 相位(ϕ)之间的关系可以描述为

式中:k 是波数;∇ 是空间坐标(x,y)上的横向梯度算 子;∂I/∂z 是强度的轴向导数,一般来说,在式(1)中选 择 z 为 0。Neumann 边界条件通常应用于式(1)的解。 则有

式中:Ω 是由 TIE 控制的区域,∂Ω 是边界;g 是一个光 滑函数。在此边界条件下,TIE 的解在加性常数之前 是唯一的。这里可直接给出绝对相位,无需 PU 处理。 如果给出包裹相位图 φW,则可以通过数值方式生成波 函数

然后可以计算强度的轴向导数。最后,可以基于 TIE 获得展开的相位图。当 TIE 用于 PU 时,式(1)可以 进一步简化。当波函数 U 的振幅设置为常数时,强 度 I 对于所有坐标(x,y)都是常数。为方便计算,此 处将振幅设置为 1,对于用 TIE 方法进行相位 PU 而 言,该设置不影响最终结果。然后式(1)可以写为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

V建模忠哥V

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值