GGUF模型的不同量化模式说明

文章介绍了Qwen1.5-72B-Chat_GGUF模型提供的8种不同量化变体,包括Q5_K_M和Q4_K_M,它们在精度、资源使用和速度上有所权衡。推荐使用Q5_K_M以保持大部分性能,或根据内存需求选择Q4_K_M。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在下载Qwen1.5-72B-Chat_GGUF模型时,发现其提供了8种不同的 GGUF模型。它们遵循特定的命名约定:“q”+ 用于存储权重的位数(精度)+ 特定变体。

下图是为了证明不同的模型质量,按照 llama.cpp 在wiki测试集上评估他们的困惑度。结果如下:

在这里插入图片描述

q8_0:与浮点数16几乎无法区分。资源使用率高,速度慢。不建议大多数用户使用。
q6_k:将Q8_K用于所有张量。
q5_k_m:将 Q6_K 用于一半的 attention.wv 和 feed_forward.w2 张量,否则Q5_K。
q5_0: 原始量化方法,5位。精度更高,资源使用率更高,推理速度更慢。
q4_k_m:将 Q6_K 用于一半的 attention.wv 和 feed_forward.w2 张量,否则Q4_K
q4_0:原始量化方法,4 位。
q3_k_m:将 Q4_K 用于 attention.wv、attention.wo 和 feed_forward.w2 张量,否则Q3_K
q2_k:将 Q4_K 用于 attention.vw 和 feed_forward.w2 张量,Q2_K用于其他张量。

根据经验,建议使用 Q5_K_M,因为它保留了模型的大部分性能。或者,如果要节省一些内存,可以使用 Q4_K_M。

内容参考:https://blog.csdn.net/znsoft/article/details/134939795
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值