Thomas Gleixner | d2912cb | 2019-06-04 10:11:33 +0200 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
Tom Lendacky | 7744ccd | 2017-07-17 16:10:03 -0500 | [diff] [blame] | 2 | /* |
| 3 | * AMD Memory Encryption Support |
| 4 | * |
| 5 | * Copyright (C) 2016 Advanced Micro Devices, Inc. |
| 6 | * |
| 7 | * Author: Tom Lendacky <[email protected]> |
Tom Lendacky | 7744ccd | 2017-07-17 16:10:03 -0500 | [diff] [blame] | 8 | */ |
| 9 | |
Tom Lendacky | bc829ee | 2017-09-29 11:24:19 -0500 | [diff] [blame] | 10 | #define DISABLE_BRANCH_PROFILING |
| 11 | |
Tom Lendacky | 7744ccd | 2017-07-17 16:10:03 -0500 | [diff] [blame] | 12 | #include <linux/linkage.h> |
Tom Lendacky | 5868f36 | 2017-07-17 16:10:05 -0500 | [diff] [blame] | 13 | #include <linux/init.h> |
Tom Lendacky | 21729f8 | 2017-07-17 16:10:07 -0500 | [diff] [blame] | 14 | #include <linux/mm.h> |
Christoph Hellwig | ea8c64a | 2018-01-10 16:21:13 +0100 | [diff] [blame] | 15 | #include <linux/dma-direct.h> |
Tom Lendacky | c775320 | 2017-07-17 16:10:21 -0500 | [diff] [blame] | 16 | #include <linux/swiotlb.h> |
Tom Lendacky | aca20d5 | 2017-07-17 16:10:35 -0500 | [diff] [blame] | 17 | #include <linux/mem_encrypt.h> |
Tom Lendacky | 9087c37 | 2019-07-10 19:01:19 +0000 | [diff] [blame] | 18 | #include <linux/device.h> |
| 19 | #include <linux/kernel.h> |
| 20 | #include <linux/bitops.h> |
| 21 | #include <linux/dma-mapping.h> |
Tom Lendacky | 7744ccd | 2017-07-17 16:10:03 -0500 | [diff] [blame] | 22 | |
Tom Lendacky | 7f8b7e7f | 2017-07-17 16:10:10 -0500 | [diff] [blame] | 23 | #include <asm/tlbflush.h> |
| 24 | #include <asm/fixmap.h> |
Tom Lendacky | b9d0520 | 2017-07-17 16:10:11 -0500 | [diff] [blame] | 25 | #include <asm/setup.h> |
| 26 | #include <asm/bootparam.h> |
Tom Lendacky | c775320 | 2017-07-17 16:10:21 -0500 | [diff] [blame] | 27 | #include <asm/set_memory.h> |
Tom Lendacky | 6ebcb06 | 2017-07-17 16:10:32 -0500 | [diff] [blame] | 28 | #include <asm/cacheflush.h> |
Tom Lendacky | aca20d5 | 2017-07-17 16:10:35 -0500 | [diff] [blame] | 29 | #include <asm/processor-flags.h> |
| 30 | #include <asm/msr.h> |
| 31 | #include <asm/cmdline.h> |
| 32 | |
Brijesh Singh | dfaaec9 | 2017-10-20 09:30:56 -0500 | [diff] [blame] | 33 | #include "mm_internal.h" |
| 34 | |
Tom Lendacky | 7744ccd | 2017-07-17 16:10:03 -0500 | [diff] [blame] | 35 | /* |
| 36 | * Since SME related variables are set early in the boot process they must |
| 37 | * reside in the .data section so as not to be zeroed out when the .bss |
| 38 | * section is later cleared. |
| 39 | */ |
Borislav Petkov | 21d9bb4 | 2017-09-07 11:38:37 +0200 | [diff] [blame] | 40 | u64 sme_me_mask __section(.data) = 0; |
Jiri Kosina | 87df261 | 2017-11-08 21:18:18 +0100 | [diff] [blame] | 41 | EXPORT_SYMBOL(sme_me_mask); |
Tom Lendacky | 606b21d | 2017-10-20 09:30:55 -0500 | [diff] [blame] | 42 | DEFINE_STATIC_KEY_FALSE(sev_enable_key); |
| 43 | EXPORT_SYMBOL_GPL(sev_enable_key); |
Tom Lendacky | 5868f36 | 2017-07-17 16:10:05 -0500 | [diff] [blame] | 44 | |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 45 | bool sev_enabled __section(.data); |
Tom Lendacky | d8aa7ee | 2017-10-20 09:30:44 -0500 | [diff] [blame] | 46 | |
Tom Lendacky | 7f8b7e7f | 2017-07-17 16:10:10 -0500 | [diff] [blame] | 47 | /* Buffer used for early in-place encryption by BSP, no locking needed */ |
David Rientjes | ffdb07f | 2019-07-10 13:19:35 -0700 | [diff] [blame] | 48 | static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE); |
Tom Lendacky | 7f8b7e7f | 2017-07-17 16:10:10 -0500 | [diff] [blame] | 49 | |
| 50 | /* |
| 51 | * This routine does not change the underlying encryption setting of the |
| 52 | * page(s) that map this memory. It assumes that eventually the memory is |
| 53 | * meant to be accessed as either encrypted or decrypted but the contents |
| 54 | * are currently not in the desired state. |
| 55 | * |
| 56 | * This routine follows the steps outlined in the AMD64 Architecture |
| 57 | * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place. |
| 58 | */ |
| 59 | static void __init __sme_early_enc_dec(resource_size_t paddr, |
| 60 | unsigned long size, bool enc) |
| 61 | { |
| 62 | void *src, *dst; |
| 63 | size_t len; |
| 64 | |
| 65 | if (!sme_me_mask) |
| 66 | return; |
| 67 | |
Tom Lendacky | 7f8b7e7f | 2017-07-17 16:10:10 -0500 | [diff] [blame] | 68 | wbinvd(); |
| 69 | |
| 70 | /* |
| 71 | * There are limited number of early mapping slots, so map (at most) |
| 72 | * one page at time. |
| 73 | */ |
| 74 | while (size) { |
| 75 | len = min_t(size_t, sizeof(sme_early_buffer), size); |
| 76 | |
| 77 | /* |
| 78 | * Create mappings for the current and desired format of |
| 79 | * the memory. Use a write-protected mapping for the source. |
| 80 | */ |
| 81 | src = enc ? early_memremap_decrypted_wp(paddr, len) : |
| 82 | early_memremap_encrypted_wp(paddr, len); |
| 83 | |
| 84 | dst = enc ? early_memremap_encrypted(paddr, len) : |
| 85 | early_memremap_decrypted(paddr, len); |
| 86 | |
| 87 | /* |
| 88 | * If a mapping can't be obtained to perform the operation, |
| 89 | * then eventual access of that area in the desired mode |
| 90 | * will cause a crash. |
| 91 | */ |
| 92 | BUG_ON(!src || !dst); |
| 93 | |
| 94 | /* |
| 95 | * Use a temporary buffer, of cache-line multiple size, to |
| 96 | * avoid data corruption as documented in the APM. |
| 97 | */ |
| 98 | memcpy(sme_early_buffer, src, len); |
| 99 | memcpy(dst, sme_early_buffer, len); |
| 100 | |
| 101 | early_memunmap(dst, len); |
| 102 | early_memunmap(src, len); |
| 103 | |
| 104 | paddr += len; |
| 105 | size -= len; |
| 106 | } |
| 107 | } |
| 108 | |
| 109 | void __init sme_early_encrypt(resource_size_t paddr, unsigned long size) |
| 110 | { |
| 111 | __sme_early_enc_dec(paddr, size, true); |
| 112 | } |
| 113 | |
| 114 | void __init sme_early_decrypt(resource_size_t paddr, unsigned long size) |
| 115 | { |
| 116 | __sme_early_enc_dec(paddr, size, false); |
| 117 | } |
| 118 | |
Tom Lendacky | b9d0520 | 2017-07-17 16:10:11 -0500 | [diff] [blame] | 119 | static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size, |
| 120 | bool map) |
| 121 | { |
| 122 | unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET; |
| 123 | pmdval_t pmd_flags, pmd; |
| 124 | |
| 125 | /* Use early_pmd_flags but remove the encryption mask */ |
| 126 | pmd_flags = __sme_clr(early_pmd_flags); |
| 127 | |
| 128 | do { |
| 129 | pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0; |
| 130 | __early_make_pgtable((unsigned long)vaddr, pmd); |
| 131 | |
| 132 | vaddr += PMD_SIZE; |
| 133 | paddr += PMD_SIZE; |
| 134 | size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE; |
| 135 | } while (size); |
| 136 | |
| 137 | __native_flush_tlb(); |
| 138 | } |
| 139 | |
| 140 | void __init sme_unmap_bootdata(char *real_mode_data) |
| 141 | { |
| 142 | struct boot_params *boot_data; |
| 143 | unsigned long cmdline_paddr; |
| 144 | |
| 145 | if (!sme_active()) |
| 146 | return; |
| 147 | |
| 148 | /* Get the command line address before unmapping the real_mode_data */ |
| 149 | boot_data = (struct boot_params *)real_mode_data; |
| 150 | cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); |
| 151 | |
| 152 | __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false); |
| 153 | |
| 154 | if (!cmdline_paddr) |
| 155 | return; |
| 156 | |
| 157 | __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false); |
| 158 | } |
| 159 | |
| 160 | void __init sme_map_bootdata(char *real_mode_data) |
| 161 | { |
| 162 | struct boot_params *boot_data; |
| 163 | unsigned long cmdline_paddr; |
| 164 | |
| 165 | if (!sme_active()) |
| 166 | return; |
| 167 | |
| 168 | __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true); |
| 169 | |
| 170 | /* Get the command line address after mapping the real_mode_data */ |
| 171 | boot_data = (struct boot_params *)real_mode_data; |
| 172 | cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); |
| 173 | |
| 174 | if (!cmdline_paddr) |
| 175 | return; |
| 176 | |
| 177 | __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true); |
| 178 | } |
| 179 | |
Tom Lendacky | 21729f8 | 2017-07-17 16:10:07 -0500 | [diff] [blame] | 180 | void __init sme_early_init(void) |
| 181 | { |
| 182 | unsigned int i; |
| 183 | |
| 184 | if (!sme_me_mask) |
| 185 | return; |
| 186 | |
| 187 | early_pmd_flags = __sme_set(early_pmd_flags); |
| 188 | |
| 189 | __supported_pte_mask = __sme_set(__supported_pte_mask); |
| 190 | |
| 191 | /* Update the protection map with memory encryption mask */ |
| 192 | for (i = 0; i < ARRAY_SIZE(protection_map); i++) |
| 193 | protection_map[i] = pgprot_encrypted(protection_map[i]); |
Tom Lendacky | d7b417f | 2017-10-20 09:30:53 -0500 | [diff] [blame] | 194 | |
| 195 | if (sev_active()) |
| 196 | swiotlb_force = SWIOTLB_FORCE; |
| 197 | } |
| 198 | |
Brijesh Singh | dfaaec9 | 2017-10-20 09:30:56 -0500 | [diff] [blame] | 199 | static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc) |
| 200 | { |
| 201 | pgprot_t old_prot, new_prot; |
| 202 | unsigned long pfn, pa, size; |
| 203 | pte_t new_pte; |
| 204 | |
| 205 | switch (level) { |
| 206 | case PG_LEVEL_4K: |
| 207 | pfn = pte_pfn(*kpte); |
| 208 | old_prot = pte_pgprot(*kpte); |
| 209 | break; |
| 210 | case PG_LEVEL_2M: |
| 211 | pfn = pmd_pfn(*(pmd_t *)kpte); |
| 212 | old_prot = pmd_pgprot(*(pmd_t *)kpte); |
| 213 | break; |
| 214 | case PG_LEVEL_1G: |
| 215 | pfn = pud_pfn(*(pud_t *)kpte); |
| 216 | old_prot = pud_pgprot(*(pud_t *)kpte); |
| 217 | break; |
| 218 | default: |
| 219 | return; |
| 220 | } |
| 221 | |
| 222 | new_prot = old_prot; |
| 223 | if (enc) |
| 224 | pgprot_val(new_prot) |= _PAGE_ENC; |
| 225 | else |
| 226 | pgprot_val(new_prot) &= ~_PAGE_ENC; |
| 227 | |
| 228 | /* If prot is same then do nothing. */ |
| 229 | if (pgprot_val(old_prot) == pgprot_val(new_prot)) |
| 230 | return; |
| 231 | |
| 232 | pa = pfn << page_level_shift(level); |
| 233 | size = page_level_size(level); |
| 234 | |
| 235 | /* |
| 236 | * We are going to perform in-place en-/decryption and change the |
| 237 | * physical page attribute from C=1 to C=0 or vice versa. Flush the |
| 238 | * caches to ensure that data gets accessed with the correct C-bit. |
| 239 | */ |
| 240 | clflush_cache_range(__va(pa), size); |
| 241 | |
| 242 | /* Encrypt/decrypt the contents in-place */ |
| 243 | if (enc) |
| 244 | sme_early_encrypt(pa, size); |
| 245 | else |
| 246 | sme_early_decrypt(pa, size); |
| 247 | |
| 248 | /* Change the page encryption mask. */ |
| 249 | new_pte = pfn_pte(pfn, new_prot); |
| 250 | set_pte_atomic(kpte, new_pte); |
| 251 | } |
| 252 | |
| 253 | static int __init early_set_memory_enc_dec(unsigned long vaddr, |
| 254 | unsigned long size, bool enc) |
| 255 | { |
| 256 | unsigned long vaddr_end, vaddr_next; |
| 257 | unsigned long psize, pmask; |
| 258 | int split_page_size_mask; |
| 259 | int level, ret; |
| 260 | pte_t *kpte; |
| 261 | |
| 262 | vaddr_next = vaddr; |
| 263 | vaddr_end = vaddr + size; |
| 264 | |
| 265 | for (; vaddr < vaddr_end; vaddr = vaddr_next) { |
| 266 | kpte = lookup_address(vaddr, &level); |
| 267 | if (!kpte || pte_none(*kpte)) { |
| 268 | ret = 1; |
| 269 | goto out; |
| 270 | } |
| 271 | |
| 272 | if (level == PG_LEVEL_4K) { |
| 273 | __set_clr_pte_enc(kpte, level, enc); |
| 274 | vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE; |
| 275 | continue; |
| 276 | } |
| 277 | |
| 278 | psize = page_level_size(level); |
| 279 | pmask = page_level_mask(level); |
| 280 | |
| 281 | /* |
| 282 | * Check whether we can change the large page in one go. |
| 283 | * We request a split when the address is not aligned and |
| 284 | * the number of pages to set/clear encryption bit is smaller |
| 285 | * than the number of pages in the large page. |
| 286 | */ |
| 287 | if (vaddr == (vaddr & pmask) && |
| 288 | ((vaddr_end - vaddr) >= psize)) { |
| 289 | __set_clr_pte_enc(kpte, level, enc); |
| 290 | vaddr_next = (vaddr & pmask) + psize; |
| 291 | continue; |
| 292 | } |
| 293 | |
| 294 | /* |
| 295 | * The virtual address is part of a larger page, create the next |
| 296 | * level page table mapping (4K or 2M). If it is part of a 2M |
| 297 | * page then we request a split of the large page into 4K |
| 298 | * chunks. A 1GB large page is split into 2M pages, resp. |
| 299 | */ |
| 300 | if (level == PG_LEVEL_2M) |
| 301 | split_page_size_mask = 0; |
| 302 | else |
| 303 | split_page_size_mask = 1 << PG_LEVEL_2M; |
| 304 | |
Brijesh Singh | eccd906 | 2019-04-17 15:41:17 +0000 | [diff] [blame] | 305 | /* |
| 306 | * kernel_physical_mapping_change() does not flush the TLBs, so |
| 307 | * a TLB flush is required after we exit from the for loop. |
| 308 | */ |
| 309 | kernel_physical_mapping_change(__pa(vaddr & pmask), |
| 310 | __pa((vaddr_end & pmask) + psize), |
| 311 | split_page_size_mask); |
Brijesh Singh | dfaaec9 | 2017-10-20 09:30:56 -0500 | [diff] [blame] | 312 | } |
| 313 | |
| 314 | ret = 0; |
| 315 | |
| 316 | out: |
| 317 | __flush_tlb_all(); |
| 318 | return ret; |
| 319 | } |
| 320 | |
| 321 | int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size) |
| 322 | { |
| 323 | return early_set_memory_enc_dec(vaddr, size, false); |
| 324 | } |
| 325 | |
| 326 | int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size) |
| 327 | { |
| 328 | return early_set_memory_enc_dec(vaddr, size, true); |
| 329 | } |
| 330 | |
Tom Lendacky | d8aa7ee | 2017-10-20 09:30:44 -0500 | [diff] [blame] | 331 | /* |
| 332 | * SME and SEV are very similar but they are not the same, so there are |
| 333 | * times that the kernel will need to distinguish between SME and SEV. The |
| 334 | * sme_active() and sev_active() functions are used for this. When a |
| 335 | * distinction isn't needed, the mem_encrypt_active() function can be used. |
| 336 | * |
| 337 | * The trampoline code is a good example for this requirement. Before |
| 338 | * paging is activated, SME will access all memory as decrypted, but SEV |
| 339 | * will access all memory as encrypted. So, when APs are being brought |
| 340 | * up under SME the trampoline area cannot be encrypted, whereas under SEV |
| 341 | * the trampoline area must be encrypted. |
| 342 | */ |
| 343 | bool sme_active(void) |
| 344 | { |
| 345 | return sme_me_mask && !sev_enabled; |
| 346 | } |
Tom Lendacky | d8aa7ee | 2017-10-20 09:30:44 -0500 | [diff] [blame] | 347 | |
| 348 | bool sev_active(void) |
| 349 | { |
| 350 | return sme_me_mask && sev_enabled; |
| 351 | } |
Tom Lendacky | d8aa7ee | 2017-10-20 09:30:44 -0500 | [diff] [blame] | 352 | |
Tom Lendacky | 9087c37 | 2019-07-10 19:01:19 +0000 | [diff] [blame] | 353 | /* Override for DMA direct allocation check - ARCH_HAS_FORCE_DMA_UNENCRYPTED */ |
| 354 | bool force_dma_unencrypted(struct device *dev) |
| 355 | { |
| 356 | /* |
| 357 | * For SEV, all DMA must be to unencrypted addresses. |
| 358 | */ |
| 359 | if (sev_active()) |
| 360 | return true; |
| 361 | |
| 362 | /* |
| 363 | * For SME, all DMA must be to unencrypted addresses if the |
| 364 | * device does not support DMA to addresses that include the |
| 365 | * encryption mask. |
| 366 | */ |
| 367 | if (sme_active()) { |
| 368 | u64 dma_enc_mask = DMA_BIT_MASK(__ffs64(sme_me_mask)); |
| 369 | u64 dma_dev_mask = min_not_zero(dev->coherent_dma_mask, |
Nicolas Saenz Julienne | a7ba70f | 2019-11-21 10:26:44 +0100 | [diff] [blame] | 370 | dev->bus_dma_limit); |
Tom Lendacky | 9087c37 | 2019-07-10 19:01:19 +0000 | [diff] [blame] | 371 | |
| 372 | if (dma_dev_mask <= dma_enc_mask) |
| 373 | return true; |
| 374 | } |
| 375 | |
| 376 | return false; |
| 377 | } |
| 378 | |
Tom Lendacky | c775320 | 2017-07-17 16:10:21 -0500 | [diff] [blame] | 379 | /* Architecture __weak replacement functions */ |
Brijesh Singh | b3f0907 | 2018-09-14 08:45:58 -0500 | [diff] [blame] | 380 | void __init mem_encrypt_free_decrypted_mem(void) |
| 381 | { |
| 382 | unsigned long vaddr, vaddr_end, npages; |
| 383 | int r; |
| 384 | |
| 385 | vaddr = (unsigned long)__start_bss_decrypted_unused; |
| 386 | vaddr_end = (unsigned long)__end_bss_decrypted; |
| 387 | npages = (vaddr_end - vaddr) >> PAGE_SHIFT; |
| 388 | |
| 389 | /* |
| 390 | * The unused memory range was mapped decrypted, change the encryption |
| 391 | * attribute from decrypted to encrypted before freeing it. |
| 392 | */ |
| 393 | if (mem_encrypt_active()) { |
| 394 | r = set_memory_encrypted(vaddr, npages); |
| 395 | if (r) { |
| 396 | pr_warn("failed to free unused decrypted pages\n"); |
| 397 | return; |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | free_init_pages("unused decrypted", vaddr, vaddr_end); |
| 402 | } |
| 403 | |
Tom Lendacky | c775320 | 2017-07-17 16:10:21 -0500 | [diff] [blame] | 404 | void __init mem_encrypt_init(void) |
| 405 | { |
| 406 | if (!sme_me_mask) |
| 407 | return; |
| 408 | |
| 409 | /* Call into SWIOTLB to update the SWIOTLB DMA buffers */ |
| 410 | swiotlb_update_mem_attributes(); |
Tom Lendacky | aca20d5 | 2017-07-17 16:10:35 -0500 | [diff] [blame] | 411 | |
Tom Lendacky | d7b417f | 2017-10-20 09:30:53 -0500 | [diff] [blame] | 412 | /* |
Tom Lendacky | 606b21d | 2017-10-20 09:30:55 -0500 | [diff] [blame] | 413 | * With SEV, we need to unroll the rep string I/O instructions. |
| 414 | */ |
| 415 | if (sev_active()) |
| 416 | static_branch_enable(&sev_enable_key); |
| 417 | |
Tom Lendacky | 1958b5f | 2017-10-20 09:30:54 -0500 | [diff] [blame] | 418 | pr_info("AMD %s active\n", |
| 419 | sev_active() ? "Secure Encrypted Virtualization (SEV)" |
| 420 | : "Secure Memory Encryption (SME)"); |
Tom Lendacky | c775320 | 2017-07-17 16:10:21 -0500 | [diff] [blame] | 421 | } |
| 422 | |