Guo Ren | a231b883 | 2019-06-18 20:06:52 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Generic ASID allocator. |
| 4 | * |
| 5 | * Based on arch/arm/mm/context.c |
| 6 | * |
| 7 | * Copyright (C) 2002-2003 Deep Blue Solutions Ltd, all rights reserved. |
| 8 | * Copyright (C) 2012 ARM Ltd. |
| 9 | */ |
| 10 | |
| 11 | #include <linux/slab.h> |
| 12 | #include <linux/mm_types.h> |
| 13 | |
| 14 | #include <asm/asid.h> |
| 15 | |
| 16 | #define reserved_asid(info, cpu) *per_cpu_ptr((info)->reserved, cpu) |
| 17 | |
| 18 | #define ASID_MASK(info) (~GENMASK((info)->bits - 1, 0)) |
| 19 | #define ASID_FIRST_VERSION(info) (1UL << ((info)->bits)) |
| 20 | |
| 21 | #define asid2idx(info, asid) (((asid) & ~ASID_MASK(info)) >> (info)->ctxt_shift) |
| 22 | #define idx2asid(info, idx) (((idx) << (info)->ctxt_shift) & ~ASID_MASK(info)) |
| 23 | |
| 24 | static void flush_context(struct asid_info *info) |
| 25 | { |
| 26 | int i; |
| 27 | u64 asid; |
| 28 | |
| 29 | /* Update the list of reserved ASIDs and the ASID bitmap. */ |
| 30 | bitmap_clear(info->map, 0, NUM_CTXT_ASIDS(info)); |
| 31 | |
| 32 | for_each_possible_cpu(i) { |
| 33 | asid = atomic64_xchg_relaxed(&active_asid(info, i), 0); |
| 34 | /* |
| 35 | * If this CPU has already been through a |
| 36 | * rollover, but hasn't run another task in |
| 37 | * the meantime, we must preserve its reserved |
| 38 | * ASID, as this is the only trace we have of |
| 39 | * the process it is still running. |
| 40 | */ |
| 41 | if (asid == 0) |
| 42 | asid = reserved_asid(info, i); |
| 43 | __set_bit(asid2idx(info, asid), info->map); |
| 44 | reserved_asid(info, i) = asid; |
| 45 | } |
| 46 | |
| 47 | /* |
| 48 | * Queue a TLB invalidation for each CPU to perform on next |
| 49 | * context-switch |
| 50 | */ |
| 51 | cpumask_setall(&info->flush_pending); |
| 52 | } |
| 53 | |
| 54 | static bool check_update_reserved_asid(struct asid_info *info, u64 asid, |
| 55 | u64 newasid) |
| 56 | { |
| 57 | int cpu; |
| 58 | bool hit = false; |
| 59 | |
| 60 | /* |
| 61 | * Iterate over the set of reserved ASIDs looking for a match. |
| 62 | * If we find one, then we can update our mm to use newasid |
| 63 | * (i.e. the same ASID in the current generation) but we can't |
| 64 | * exit the loop early, since we need to ensure that all copies |
| 65 | * of the old ASID are updated to reflect the mm. Failure to do |
| 66 | * so could result in us missing the reserved ASID in a future |
| 67 | * generation. |
| 68 | */ |
| 69 | for_each_possible_cpu(cpu) { |
| 70 | if (reserved_asid(info, cpu) == asid) { |
| 71 | hit = true; |
| 72 | reserved_asid(info, cpu) = newasid; |
| 73 | } |
| 74 | } |
| 75 | |
| 76 | return hit; |
| 77 | } |
| 78 | |
| 79 | static u64 new_context(struct asid_info *info, atomic64_t *pasid, |
| 80 | struct mm_struct *mm) |
| 81 | { |
| 82 | static u32 cur_idx = 1; |
| 83 | u64 asid = atomic64_read(pasid); |
| 84 | u64 generation = atomic64_read(&info->generation); |
| 85 | |
| 86 | if (asid != 0) { |
| 87 | u64 newasid = generation | (asid & ~ASID_MASK(info)); |
| 88 | |
| 89 | /* |
| 90 | * If our current ASID was active during a rollover, we |
| 91 | * can continue to use it and this was just a false alarm. |
| 92 | */ |
| 93 | if (check_update_reserved_asid(info, asid, newasid)) |
| 94 | return newasid; |
| 95 | |
| 96 | /* |
| 97 | * We had a valid ASID in a previous life, so try to re-use |
| 98 | * it if possible. |
| 99 | */ |
| 100 | if (!__test_and_set_bit(asid2idx(info, asid), info->map)) |
| 101 | return newasid; |
| 102 | } |
| 103 | |
| 104 | /* |
| 105 | * Allocate a free ASID. If we can't find one, take a note of the |
| 106 | * currently active ASIDs and mark the TLBs as requiring flushes. We |
| 107 | * always count from ASID #2 (index 1), as we use ASID #0 when setting |
| 108 | * a reserved TTBR0 for the init_mm and we allocate ASIDs in even/odd |
| 109 | * pairs. |
| 110 | */ |
| 111 | asid = find_next_zero_bit(info->map, NUM_CTXT_ASIDS(info), cur_idx); |
| 112 | if (asid != NUM_CTXT_ASIDS(info)) |
| 113 | goto set_asid; |
| 114 | |
| 115 | /* We're out of ASIDs, so increment the global generation count */ |
| 116 | generation = atomic64_add_return_relaxed(ASID_FIRST_VERSION(info), |
| 117 | &info->generation); |
| 118 | flush_context(info); |
| 119 | |
| 120 | /* We have more ASIDs than CPUs, so this will always succeed */ |
| 121 | asid = find_next_zero_bit(info->map, NUM_CTXT_ASIDS(info), 1); |
| 122 | |
| 123 | set_asid: |
| 124 | __set_bit(asid, info->map); |
| 125 | cur_idx = asid; |
| 126 | cpumask_clear(mm_cpumask(mm)); |
| 127 | return idx2asid(info, asid) | generation; |
| 128 | } |
| 129 | |
| 130 | /* |
| 131 | * Generate a new ASID for the context. |
| 132 | * |
| 133 | * @pasid: Pointer to the current ASID batch allocated. It will be updated |
| 134 | * with the new ASID batch. |
| 135 | * @cpu: current CPU ID. Must have been acquired through get_cpu() |
| 136 | */ |
| 137 | void asid_new_context(struct asid_info *info, atomic64_t *pasid, |
| 138 | unsigned int cpu, struct mm_struct *mm) |
| 139 | { |
| 140 | unsigned long flags; |
| 141 | u64 asid; |
| 142 | |
| 143 | raw_spin_lock_irqsave(&info->lock, flags); |
| 144 | /* Check that our ASID belongs to the current generation. */ |
| 145 | asid = atomic64_read(pasid); |
| 146 | if ((asid ^ atomic64_read(&info->generation)) >> info->bits) { |
| 147 | asid = new_context(info, pasid, mm); |
| 148 | atomic64_set(pasid, asid); |
| 149 | } |
| 150 | |
| 151 | if (cpumask_test_and_clear_cpu(cpu, &info->flush_pending)) |
| 152 | info->flush_cpu_ctxt_cb(); |
| 153 | |
| 154 | atomic64_set(&active_asid(info, cpu), asid); |
| 155 | cpumask_set_cpu(cpu, mm_cpumask(mm)); |
| 156 | raw_spin_unlock_irqrestore(&info->lock, flags); |
| 157 | } |
| 158 | |
| 159 | /* |
| 160 | * Initialize the ASID allocator |
| 161 | * |
| 162 | * @info: Pointer to the asid allocator structure |
| 163 | * @bits: Number of ASIDs available |
| 164 | * @asid_per_ctxt: Number of ASIDs to allocate per-context. ASIDs are |
| 165 | * allocated contiguously for a given context. This value should be a power of |
| 166 | * 2. |
| 167 | */ |
| 168 | int asid_allocator_init(struct asid_info *info, |
| 169 | u32 bits, unsigned int asid_per_ctxt, |
| 170 | void (*flush_cpu_ctxt_cb)(void)) |
| 171 | { |
| 172 | info->bits = bits; |
| 173 | info->ctxt_shift = ilog2(asid_per_ctxt); |
| 174 | info->flush_cpu_ctxt_cb = flush_cpu_ctxt_cb; |
| 175 | /* |
| 176 | * Expect allocation after rollover to fail if we don't have at least |
| 177 | * one more ASID than CPUs. ASID #0 is always reserved. |
| 178 | */ |
| 179 | WARN_ON(NUM_CTXT_ASIDS(info) - 1 <= num_possible_cpus()); |
| 180 | atomic64_set(&info->generation, ASID_FIRST_VERSION(info)); |
| 181 | info->map = kcalloc(BITS_TO_LONGS(NUM_CTXT_ASIDS(info)), |
| 182 | sizeof(*info->map), GFP_KERNEL); |
| 183 | if (!info->map) |
| 184 | return -ENOMEM; |
| 185 | |
| 186 | raw_spin_lock_init(&info->lock); |
| 187 | |
| 188 | return 0; |
| 189 | } |