| # Copyright 2013 The Android Open Source Project |
| # |
| # Licensed under the Apache License, Version 2.0 (the "License"); |
| # you may not use this file except in compliance with the License. |
| # You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| """Image processing utility functions.""" |
| |
| |
| import copy |
| import io |
| import logging |
| import math |
| import matplotlib |
| from matplotlib import pyplot as plt |
| import os |
| import sys |
| |
| import capture_request_utils |
| import error_util |
| import noise_model_constants |
| import numpy |
| from PIL import Image |
| from PIL import ImageCms |
| |
| |
| _ARUCO_MARKERS_COUNT = 4 |
| _CH_FULL_SCALE = 255 |
| _CMAP_BLUE = ('black', 'blue', 'lightblue') |
| _CMAP_GREEN = ('black', 'green', 'lightgreen') |
| _CMAP_RED = ('black', 'red', 'lightcoral') |
| _CMAP_SIZE = 6 # 6 inches |
| _NATURAL_ORIENTATION_PORTRAIT = (90, 270) # orientation in "normal position" |
| _NUM_RAW_CHANNELS = 4 # R, Gr, Gb, B |
| |
| LENS_SHADING_MAP_ON = 1 |
| |
| # The matrix is from JFIF spec |
| DEFAULT_YUV_TO_RGB_CCM = numpy.matrix([[1.000, 0.000, 1.402], |
| [1.000, -0.344, -0.714], |
| [1.000, 1.772, 0.000]]) |
| |
| DEFAULT_YUV_OFFSETS = numpy.array([0, 128, 128], dtype=numpy.uint8) |
| MAX_LUT_SIZE = 65536 |
| DEFAULT_GAMMA_LUT = numpy.array([ |
| math.floor((MAX_LUT_SIZE-1) * math.pow(i/(MAX_LUT_SIZE-1), 1/2.2) + 0.5) |
| for i in range(MAX_LUT_SIZE)]) |
| RGB2GRAY_WEIGHTS = (0.299, 0.587, 0.114) |
| TEST_IMG_DIR = os.path.join(os.environ['CAMERA_ITS_TOP'], 'test_images') |
| |
| # Expected adapted primaries in ICC profile per color space |
| EXPECTED_RX_P3 = 0.682 |
| EXPECTED_RY_P3 = 0.319 |
| EXPECTED_GX_P3 = 0.285 |
| EXPECTED_GY_P3 = 0.675 |
| EXPECTED_BX_P3 = 0.156 |
| EXPECTED_BY_P3 = 0.066 |
| |
| EXPECTED_RX_SRGB = 0.648 |
| EXPECTED_RY_SRGB = 0.331 |
| EXPECTED_GX_SRGB = 0.321 |
| EXPECTED_GY_SRGB = 0.598 |
| EXPECTED_BX_SRGB = 0.156 |
| EXPECTED_BY_SRGB = 0.066 |
| |
| # Color conversion matrix for DISPLAY P3 to CIEXYZ |
| P3_TO_XYZ = numpy.array([ |
| [0.5151187, 0.2919778, 0.1571035], |
| [0.2411892, 0.6922441, 0.0665668], |
| [-0.0010505, 0.0418791, 0.7840713] |
| ]).transpose() |
| |
| # Chosen empirically - tolerance for the point in triangle test for colorspace |
| # chromaticities |
| COLORSPACE_TRIANGLE_AREA_TOL = 0.00039 |
| |
| |
| def plot_lsc_maps(lsc_maps, plot_name, test_name_with_log_path): |
| """Plot the lens shading correction maps. |
| |
| Args: |
| lsc_maps: 4D np array; r, gr, gb, b lens shading correction maps. |
| plot_name: str; identifier for maps ('full_scale' or 'metadata'). |
| test_name_with_log_path: str; test name with log_path location. |
| |
| Returns: |
| None, but generates and saves plots. |
| """ |
| aspect_ratio = lsc_maps[:, :, 0].shape[1] / lsc_maps[:, :, 0].shape[0] |
| plot_w = 1 + aspect_ratio * _CMAP_SIZE # add 1 for heatmap legend |
| plt.figure(plot_name, figsize=(plot_w, _CMAP_SIZE)) |
| plt.suptitle(plot_name) |
| |
| plt.subplot(2, 2, 1) # 2x2 top left |
| plt.title('R') |
| cmap = matplotlib.colors.LinearSegmentedColormap.from_list('', _CMAP_RED) |
| plt.pcolormesh(lsc_maps[:, :, 0], cmap=cmap) |
| plt.colorbar() |
| |
| plt.subplot(2, 2, 2) # 2x2 top right |
| plt.title('Gr') |
| cmap = matplotlib.colors.LinearSegmentedColormap.from_list('', _CMAP_GREEN) |
| plt.pcolormesh(lsc_maps[:, :, 1], cmap=cmap) |
| plt.colorbar() |
| |
| plt.subplot(2, 2, 3) # 2x2 bottom left |
| plt.title('Gb') |
| cmap = matplotlib.colors.LinearSegmentedColormap.from_list('', _CMAP_GREEN) |
| plt.pcolormesh(lsc_maps[:, :, 2], cmap=cmap) |
| plt.colorbar() |
| |
| plt.subplot(2, 2, 4) # 2x2 bottom right |
| plt.title('B') |
| cmap = matplotlib.colors.LinearSegmentedColormap.from_list('', _CMAP_BLUE) |
| plt.pcolormesh(lsc_maps[:, :, 3], cmap=cmap) |
| plt.colorbar() |
| |
| plt.savefig(f'{test_name_with_log_path}_{plot_name}_cmaps.png') |
| |
| |
| def capture_scene_image(cam, props, name_with_log_path): |
| """Take a picture of the scene on test FAIL.""" |
| req = capture_request_utils.auto_capture_request() |
| img = convert_capture_to_rgb_image( |
| cam.do_capture(req, cam.CAP_YUV), props=props) |
| write_image(img, f'{name_with_log_path}_scene.jpg', True) |
| |
| |
| def convert_image_to_uint8(image): |
| image = image*255 |
| return image.astype(numpy.uint8) |
| |
| |
| def assert_props_is_not_none(props): |
| if not props: |
| raise AssertionError('props is None') |
| |
| |
| def assert_capture_width_and_height(cap, width, height): |
| if cap['width'] != width or cap['height'] != height: |
| raise AssertionError( |
| 'Unexpected capture WxH size, expected [{}x{}], actual [{}x{}]'.format( |
| width, height, cap['width'], cap['height'] |
| ) |
| ) |
| |
| |
| def apply_lens_shading_map(color_plane, black_level, white_level, lsc_map): |
| """Apply the lens shading map to the color plane. |
| |
| Args: |
| color_plane: 2D np array for color plane with values [0.0, 1.0]. |
| black_level: float; black level for the color plane. |
| white_level: int; full scale for the color plane. |
| lsc_map: 2D np array lens shading matching size of color_plane. |
| |
| Returns: |
| color_plane with lsc applied. |
| """ |
| logging.debug('color plane pre-lsc min, max: %.4f, %.4f', |
| numpy.min(color_plane), numpy.max(color_plane)) |
| color_plane = (numpy.multiply((color_plane * white_level - black_level), |
| lsc_map) |
| + black_level) / white_level |
| logging.debug('color plane post-lsc min, max: %.4f, %.4f', |
| numpy.min(color_plane), numpy.max(color_plane)) |
| return color_plane |
| |
| |
| def populate_lens_shading_map(img_shape, lsc_map): |
| """Helper function to create LSC coeifficients for RAW image. |
| |
| Args: |
| img_shape: tuple; RAW image shape. |
| lsc_map: 2D low resolution array with lens shading map values. |
| |
| Returns: |
| value for lens shading map at point (x, y) in the image. |
| """ |
| img_w, img_h = img_shape[1], img_shape[0] |
| map_w, map_h = lsc_map.shape[1], lsc_map.shape[0] |
| |
| x, y = numpy.meshgrid(numpy.arange(img_w), numpy.arange(img_h)) |
| |
| # (u,v) is lsc map location, values [0, map_w-1], [0, map_h-1] |
| # Vectorized calculations |
| u = x * (map_w - 1) / (img_w - 1) |
| v = y * (map_h - 1) / (img_h - 1) |
| u_min = numpy.floor(u).astype(int) |
| v_min = numpy.floor(v).astype(int) |
| u_frac = u - u_min |
| v_frac = v - v_min |
| u_max = numpy.where(u_frac > 0, u_min + 1, u_min) |
| v_max = numpy.where(v_frac > 0, v_min + 1, v_min) |
| |
| # Gather LSC values, handling edge cases (optional) |
| lsc_tl = lsc_map[(v_min, u_min)] |
| lsc_tr = lsc_map[(v_min, u_max)] |
| lsc_bl = lsc_map[(v_max, u_min)] |
| lsc_br = lsc_map[(v_max, u_max)] |
| |
| # Bilinear interpolation (vectorized) |
| lsc_t = lsc_tl * (1 - u_frac) + lsc_tr * u_frac |
| lsc_b = lsc_bl * (1 - u_frac) + lsc_br * u_frac |
| |
| return lsc_t * (1 - v_frac) + lsc_b * v_frac |
| |
| |
| def unpack_lsc_map_from_metadata(metadata): |
| """Get lens shading correction map from metadata and turn into 3D array. |
| |
| Args: |
| metadata: dict; metadata from RAW capture. |
| |
| Returns: |
| 3D numpy array of lens shading maps. |
| """ |
| lsc_metadata = metadata['android.statistics.lensShadingCorrectionMap'] |
| lsc_map_w, lsc_map_h = lsc_metadata['width'], lsc_metadata['height'] |
| lsc_map = lsc_metadata['map'] |
| logging.debug( |
| 'lensShadingCorrectionMap (H, W): (%d, %d)', lsc_map_h, lsc_map_w |
| ) |
| return numpy.array(lsc_map).reshape(lsc_map_h, lsc_map_w, _NUM_RAW_CHANNELS) |
| |
| |
| def convert_raw_capture_to_rgb_image(cap_raw, props, raw_fmt, |
| log_path_with_name): |
| """Convert a RAW captured image object to a RGB image. |
| |
| Args: |
| cap_raw: A RAW capture object as returned by its_session_utils.do_capture. |
| props: camera properties object (of static values). |
| raw_fmt: string of type 'raw', 'raw10', 'raw12'. |
| log_path_with_name: string with test name and save location. |
| |
| Returns: |
| RGB float-3 image array, with pixel values in [0.0, 1.0]. |
| """ |
| shading_mode = cap_raw['metadata']['android.shading.mode'] |
| lens_shading_map_mode = cap_raw[ |
| 'metadata'].get('android.statistics.lensShadingMapMode') |
| lens_shading_applied = props['android.sensor.info.lensShadingApplied'] |
| control_af_mode = cap_raw['metadata']['android.control.afMode'] |
| focus_distance = cap_raw['metadata']['android.lens.focusDistance'] |
| logging.debug('%s capture AF mode: %s', raw_fmt, control_af_mode) |
| logging.debug('%s capture focus distance: %s', raw_fmt, focus_distance) |
| logging.debug('%s capture shading mode: %d', raw_fmt, shading_mode) |
| logging.debug('lensShadingMapApplied: %r', lens_shading_applied) |
| logging.debug('lensShadingMapMode: %s', lens_shading_map_mode) |
| |
| # Split RAW to RGB conversion in 2 to allow LSC application (if needed). |
| r, gr, gb, b = convert_capture_to_planes(cap_raw, props=props) |
| |
| # get from metadata, upsample, and apply |
| if lens_shading_map_mode == LENS_SHADING_MAP_ON: |
| logging.debug('Applying lens shading map') |
| plot_name_stem_with_log_path = f'{log_path_with_name}_{raw_fmt}' |
| black_levels = get_black_levels(props, cap_raw) |
| white_level = int(props['android.sensor.info.whiteLevel']) |
| lsc_maps = unpack_lsc_map_from_metadata(cap_raw['metadata']) |
| plot_lsc_maps(lsc_maps, 'metadata', plot_name_stem_with_log_path) |
| lsc_map_fs_r = populate_lens_shading_map(r.shape, lsc_maps[:, :, 0]) |
| lsc_map_fs_gr = populate_lens_shading_map(gr.shape, lsc_maps[:, :, 1]) |
| lsc_map_fs_gb = populate_lens_shading_map(gb.shape, lsc_maps[:, :, 2]) |
| lsc_map_fs_b = populate_lens_shading_map(b.shape, lsc_maps[:, :, 3]) |
| plot_lsc_maps( |
| numpy.dstack((lsc_map_fs_r, lsc_map_fs_gr, lsc_map_fs_gb, |
| lsc_map_fs_b)), |
| 'fullscale', plot_name_stem_with_log_path |
| ) |
| r = apply_lens_shading_map( |
| r[:, :, 0], black_levels[0], white_level, lsc_map_fs_r |
| ) |
| gr = apply_lens_shading_map( |
| gr[:, :, 0], black_levels[1], white_level, lsc_map_fs_gr |
| ) |
| gb = apply_lens_shading_map( |
| gb[:, :, 0], black_levels[2], white_level, lsc_map_fs_gb |
| ) |
| b = apply_lens_shading_map( |
| b[:, :, 0], black_levels[3], white_level, lsc_map_fs_b |
| ) |
| img = convert_raw_to_rgb_image(r, gr, gb, b, props, cap_raw['metadata']) |
| return img |
| |
| |
| def convert_capture_to_rgb_image(cap, |
| props=None, |
| apply_ccm_raw_to_rgb=True): |
| """Convert a captured image object to a RGB image. |
| |
| Args: |
| cap: A capture object as returned by its_session_utils.do_capture. |
| props: (Optional) camera properties object (of static values); |
| required for processing raw images. |
| apply_ccm_raw_to_rgb: (Optional) boolean to apply color correction matrix. |
| |
| Returns: |
| RGB float-3 image array, with pixel values in [0.0, 1.0]. |
| """ |
| w = cap['width'] |
| h = cap['height'] |
| if cap['format'] == 'raw10' or cap['format'] == 'raw10QuadBayer': |
| assert_props_is_not_none(props) |
| is_quad_bayer = cap['format'] == 'raw10QuadBayer' |
| cap = unpack_raw10_capture(cap, is_quad_bayer) |
| |
| if cap['format'] == 'raw12': |
| assert_props_is_not_none(props) |
| cap = unpack_raw12_capture(cap) |
| |
| if cap['format'] == 'yuv': |
| y = cap['data'][0: w * h] |
| u = cap['data'][w * h: w * h * 5//4] |
| v = cap['data'][w * h * 5//4: w * h * 6//4] |
| return convert_yuv420_planar_to_rgb_image(y, u, v, w, h) |
| elif (cap['format'] == 'jpeg' or cap['format'] == 'jpeg_r' or |
| cap['format'] == 'heic_ultrahdr'): |
| return decompress_jpeg_to_rgb_image(cap['data']) |
| elif (cap['format'] in ('raw', 'rawQuadBayer') or |
| cap['format'] in noise_model_constants.VALID_RAW_STATS_FORMATS): |
| assert_props_is_not_none(props) |
| r, gr, gb, b = convert_capture_to_planes(cap, props) |
| return convert_raw_to_rgb_image( |
| r, gr, gb, b, props, cap['metadata'], apply_ccm_raw_to_rgb) |
| elif cap['format'] == 'y8': |
| y = cap['data'][0: w * h] |
| return convert_y8_to_rgb_image(y, w, h) |
| else: |
| raise error_util.CameraItsError(f"Invalid format {cap['format']}") |
| |
| |
| def unpack_raw10_capture(cap, is_quad_bayer=False): |
| """Unpack a raw-10 capture to a raw-16 capture. |
| |
| Args: |
| cap: A raw-10 capture object. |
| is_quad_bayer: Boolean flag for Bayer or Quad Bayer capture. |
| |
| Returns: |
| New capture object with raw-16 data. |
| """ |
| # Data is packed as 4x10b pixels in 5 bytes, with the first 4 bytes holding |
| # the MSBs of the pixels, and the 5th byte holding 4x2b LSBs. |
| w, h = cap['width'], cap['height'] |
| if w % 4 != 0: |
| raise error_util.CameraItsError('Invalid raw-10 buffer width') |
| cap = copy.deepcopy(cap) |
| cap['data'] = unpack_raw10_image(cap['data'].reshape(h, w * 5 // 4)) |
| cap['format'] = 'rawQuadBayer' if is_quad_bayer else 'raw' |
| return cap |
| |
| |
| def unpack_raw10_image(img): |
| """Unpack a raw-10 image to a raw-16 image. |
| |
| Output image will have the 10 LSBs filled in each 16b word, and the 6 MSBs |
| will be set to zero. |
| |
| Args: |
| img: A raw-10 image, as a uint8 numpy array. |
| |
| Returns: |
| Image as a uint16 numpy array, with all row padding stripped. |
| """ |
| if img.shape[1] % 5 != 0: |
| raise error_util.CameraItsError('Invalid raw-10 buffer width') |
| w = img.shape[1] * 4 // 5 |
| h = img.shape[0] |
| # Cut out the 4x8b MSBs and shift to bits [9:2] in 16b words. |
| msbs = numpy.delete(img, numpy.s_[4::5], 1) |
| msbs = msbs.astype(numpy.uint16) |
| msbs = numpy.left_shift(msbs, 2) |
| msbs = msbs.reshape(h, w) |
| # Cut out the 4x2b LSBs and put each in bits [1:0] of their own 8b words. |
| lsbs = img[::, 4::5].reshape(h, w // 4) |
| lsbs = numpy.right_shift( |
| numpy.packbits(numpy.unpackbits(lsbs).reshape((h, w // 4, 4, 2)), 3), 6) |
| # Pair the LSB bits group to 0th pixel instead of 3rd pixel |
| lsbs = lsbs.reshape(h, w // 4, 4)[:, :, ::-1] |
| lsbs = lsbs.reshape(h, w) |
| # Fuse the MSBs and LSBs back together |
| img16 = numpy.bitwise_or(msbs, lsbs).reshape(h, w) |
| return img16 |
| |
| |
| def unpack_raw12_capture(cap): |
| """Unpack a raw-12 capture to a raw-16 capture. |
| |
| Args: |
| cap: A raw-12 capture object. |
| |
| Returns: |
| New capture object with raw-16 data. |
| """ |
| # Data is packed as 4x10b pixels in 5 bytes, with the first 4 bytes holding |
| # the MSBs of the pixels, and the 5th byte holding 4x2b LSBs. |
| w, h = cap['width'], cap['height'] |
| if w % 2 != 0: |
| raise error_util.CameraItsError('Invalid raw-12 buffer width') |
| cap = copy.deepcopy(cap) |
| cap['data'] = unpack_raw12_image(cap['data'].reshape(h, w * 3 // 2)) |
| cap['format'] = 'raw' |
| return cap |
| |
| |
| def unpack_raw12_image(img): |
| """Unpack a raw-12 image to a raw-16 image. |
| |
| Output image will have the 12 LSBs filled in each 16b word, and the 4 MSBs |
| will be set to zero. |
| |
| Args: |
| img: A raw-12 image, as a uint8 numpy array. |
| |
| Returns: |
| Image as a uint16 numpy array, with all row padding stripped. |
| """ |
| if img.shape[1] % 3 != 0: |
| raise error_util.CameraItsError('Invalid raw-12 buffer width') |
| w = img.shape[1] * 2 // 3 |
| h = img.shape[0] |
| # Cut out the 2x8b MSBs and shift to bits [11:4] in 16b words. |
| msbs = numpy.delete(img, numpy.s_[2::3], 1) |
| msbs = msbs.astype(numpy.uint16) |
| msbs = numpy.left_shift(msbs, 4) |
| msbs = msbs.reshape(h, w) |
| # Cut out the 2x4b LSBs and put each in bits [3:0] of their own 8b words. |
| lsbs = img[::, 2::3].reshape(h, w // 2) |
| lsbs = numpy.right_shift( |
| numpy.packbits(numpy.unpackbits(lsbs).reshape((h, w // 2, 2, 4)), 3), 4) |
| # Pair the LSB bits group to pixel 0 instead of pixel 1 |
| lsbs = lsbs.reshape(h, w // 2, 2)[:, :, ::-1] |
| lsbs = lsbs.reshape(h, w) |
| # Fuse the MSBs and LSBs back together |
| img16 = numpy.bitwise_or(msbs, lsbs).reshape(h, w) |
| return img16 |
| |
| |
| def convert_yuv420_planar_to_rgb_image(y_plane, u_plane, v_plane, |
| w, h, |
| ccm_yuv_to_rgb=DEFAULT_YUV_TO_RGB_CCM, |
| yuv_off=DEFAULT_YUV_OFFSETS): |
| """Convert a YUV420 8-bit planar image to an RGB image. |
| |
| Args: |
| y_plane: The packed 8-bit Y plane. |
| u_plane: The packed 8-bit U plane. |
| v_plane: The packed 8-bit V plane. |
| w: The width of the image. |
| h: The height of the image. |
| ccm_yuv_to_rgb: (Optional) the 3x3 CCM to convert from YUV to RGB. |
| yuv_off: (Optional) offsets to subtract from each of Y,U,V values. |
| |
| Returns: |
| RGB float-3 image array, with pixel values in [0.0, 1.0]. |
| """ |
| y = numpy.subtract(y_plane, yuv_off[0]) |
| u = numpy.subtract(u_plane, yuv_off[1]).view(numpy.int8) |
| v = numpy.subtract(v_plane, yuv_off[2]).view(numpy.int8) |
| u = u.reshape(h // 2, w // 2).repeat(2, axis=1).repeat(2, axis=0) |
| v = v.reshape(h // 2, w // 2).repeat(2, axis=1).repeat(2, axis=0) |
| yuv = numpy.dstack([y, u.reshape(w * h), v.reshape(w * h)]) |
| flt = numpy.empty([h, w, 3], dtype=numpy.float32) |
| flt.reshape(w * h * 3)[:] = yuv.reshape(h * w * 3)[:] |
| flt = numpy.dot(flt.reshape(w * h, 3), ccm_yuv_to_rgb.T).clip(0, 255) |
| rgb = numpy.empty([h, w, 3], dtype=numpy.uint8) |
| rgb.reshape(w * h * 3)[:] = flt.reshape(w * h * 3)[:] |
| return rgb.astype(numpy.float32) / 255.0 |
| |
| |
| def decompress_jpeg_to_rgb_image(jpeg_buffer): |
| """Decompress a JPEG-compressed image, returning as an RGB image. |
| |
| Args: |
| jpeg_buffer: The JPEG stream. |
| |
| Returns: |
| A numpy array for the RGB image, with pixels in [0,1]. |
| """ |
| img = Image.open(io.BytesIO(jpeg_buffer)) |
| w = img.size[0] |
| h = img.size[1] |
| return numpy.array(img).reshape((h, w, 3)) / 255.0 |
| |
| |
| def decompress_jpeg_to_yuv_image(jpeg_buffer): |
| """Decompress a JPEG-compressed image, returning as a YUV image. |
| |
| Args: |
| jpeg_buffer: The JPEG stream. |
| |
| Returns: |
| A numpy array for the YUV image, with pixels in [0,1]. |
| """ |
| img = Image.open(io.BytesIO(jpeg_buffer)) |
| img = img.convert('YCbCr') |
| w = img.size[0] |
| h = img.size[1] |
| return numpy.array(img).reshape((h, w, 3)) / 255.0 |
| |
| |
| def extract_luma_from_patch(cap, patch_x, patch_y, patch_w, patch_h): |
| """Extract luma from capture.""" |
| y, _, _ = convert_capture_to_planes(cap) |
| patch = get_image_patch(y, patch_x, patch_y, patch_w, patch_h) |
| luma = compute_image_means(patch)[0] |
| return luma |
| |
| |
| def convert_image_to_numpy_array(image_path): |
| """Converts image at image_path to numpy array and returns the array. |
| |
| Args: |
| image_path: file path |
| |
| Returns: |
| numpy array |
| """ |
| if not os.path.exists(image_path): |
| raise AssertionError(f'{image_path} does not exist.') |
| image = Image.open(image_path) |
| return numpy.array(image) |
| |
| |
| def _convert_quad_bayer_img_to_bayer_channels(quad_bayer_img, props=None): |
| """Convert a quad Bayer image to the Bayer image channels. |
| |
| Args: |
| quad_bayer_img: The quad Bayer image. |
| props: The camera properties. |
| |
| Returns: |
| A list of reordered standard Bayer channels of the Bayer image. |
| """ |
| height, width, num_channels = quad_bayer_img.shape |
| |
| if num_channels != noise_model_constants.NUM_QUAD_BAYER_CHANNELS: |
| raise AssertionError( |
| 'The number of channels in the quad Bayer image must be ' |
| f'{noise_model_constants.NUM_QUAD_BAYER_CHANNELS}.' |
| ) |
| quad_bayer_cfa_order = get_canonical_cfa_order(props, is_quad_bayer=True) |
| |
| # Bayer channels are in the order of R, Gr, Gb and B. |
| bayer_channels = [] |
| for ch in range(4): |
| channel_img = numpy.zeros(shape=(height, width), dtype='<f') |
| # Average every four quad Bayer channels into a standard Bayer channel. |
| for i in quad_bayer_cfa_order[4 * ch: 4 * (ch + 1)]: |
| channel_img[:, :] += quad_bayer_img[:, :, i] |
| bayer_channels.append(channel_img / 4) |
| return bayer_channels |
| |
| |
| def subsample(image, num_channels=4): |
| """Subsamples the image to separate its color channels. |
| |
| Args: |
| image: 2-D numpy array of raw image. |
| num_channels: The number of channels in the image. |
| |
| Returns: |
| 3-D numpy image with each channel separated. |
| """ |
| if num_channels not in noise_model_constants.VALID_NUM_CHANNELS: |
| raise error_util.CameraItsError( |
| f'Invalid number of channels {num_channels}, which should be in ' |
| f'{noise_model_constants.VALID_NUM_CHANNELS}.' |
| ) |
| |
| size_h, size_v = image.shape[1], image.shape[0] |
| |
| # Subsample step size, which is the horizontal or vertical pixel interval |
| # between two adjacent pixels of the same channel. |
| stride = int(numpy.sqrt(num_channels)) |
| subsample_img = lambda img, i, h, v, s: img[i // s: v: s, i % s: h: s] |
| channel_img = numpy.empty(( |
| image.shape[0] // stride, |
| image.shape[1] // stride, |
| num_channels, |
| )) |
| |
| for i in range(num_channels): |
| sub_img = subsample_img(image, i, size_h, size_v, stride) |
| channel_img[:, :, i] = sub_img |
| |
| return channel_img |
| |
| |
| def convert_capture_to_planes(cap, props=None): |
| """Convert a captured image object to separate image planes. |
| |
| Decompose an image into multiple images, corresponding to different planes. |
| |
| For YUV420 captures ("yuv"): |
| Returns Y,U,V planes, where the Y plane is full-res and the U,V planes |
| are each 1/2 x 1/2 of the full res. |
| |
| For standard Bayer or quad Bayer captures ("raw", "raw10", "raw12", |
| "rawQuadBayer", "rawStats", "rawQuadBayerStats", "raw10QuadBayer", |
| "raw10Stats", "raw10QuadBayerStats"): |
| Returns planes in the order R, Gr, Gb, B, regardless of the Bayer |
| pattern layout. |
| For full-res raw images ("raw", "rawQuadBayer", "raw10", |
| "raw10QuadBayer", "raw12"), each plane is 1/2 x 1/2 of the full res. |
| For standard Bayer stats images, the mean image is returned. |
| For quad Bayer stats images, the average mean image is returned. |
| |
| For JPEG captures ("jpeg"): |
| Returns R,G,B full-res planes. |
| |
| Args: |
| cap: A capture object as returned by its_session_utils.do_capture. |
| props: (Optional) camera properties object (of static values); |
| required for processing raw images. |
| |
| Returns: |
| A tuple of float numpy arrays (one per plane), consisting of pixel values |
| in the range [0.0, 1.0]. |
| """ |
| w = cap['width'] |
| h = cap['height'] |
| if cap['format'] in ('raw10', 'raw10QuadBayer'): |
| assert_props_is_not_none(props) |
| is_quad_bayer = cap['format'] == 'raw10QuadBayer' |
| cap = unpack_raw10_capture(cap, is_quad_bayer) |
| |
| if cap['format'] == 'raw12': |
| assert_props_is_not_none(props) |
| cap = unpack_raw12_capture(cap) |
| if cap['format'] == 'yuv': |
| y = cap['data'][0:w * h] |
| u = cap['data'][w * h:w * h * 5 // 4] |
| v = cap['data'][w * h * 5 // 4:w * h * 6 // 4] |
| return ((y.astype(numpy.float32) / 255.0).reshape(h, w, 1), |
| (u.astype(numpy.float32) / 255.0).reshape(h // 2, w // 2, 1), |
| (v.astype(numpy.float32) / 255.0).reshape(h // 2, w // 2, 1)) |
| elif cap['format'] == 'jpeg': |
| rgb = decompress_jpeg_to_rgb_image(cap['data']).reshape(w * h * 3) |
| return (rgb[::3].reshape(h, w, 1), rgb[1::3].reshape(h, w, 1), |
| rgb[2::3].reshape(h, w, 1)) |
| elif cap['format'] in ('raw', 'rawQuadBayer'): |
| assert_props_is_not_none(props) |
| is_quad_bayer = 'QuadBayer' in cap['format'] |
| white_level = get_white_level(props, cap['metadata']) |
| img = numpy.ndarray( |
| shape=(h * w,), dtype='<u2', buffer=cap['data'][0:w * h * 2]) |
| img = img.astype(numpy.float32).reshape(h, w) / white_level |
| if is_quad_bayer: |
| pixel_array_size = props.get( |
| 'android.sensor.info.pixelArraySizeMaximumResolution' |
| ) |
| active_array_size = props.get( |
| 'android.sensor.info.preCorrectionActiveArraySizeMaximumResolution' |
| ) |
| else: |
| pixel_array_size = props.get('android.sensor.info.pixelArraySize') |
| active_array_size = props.get( |
| 'android.sensor.info.preCorrectionActiveArraySize' |
| ) |
| # Crop the raw image to the active array region. |
| if pixel_array_size and active_array_size: |
| # Note that the Rect class is defined such that the left,top values |
| # are "inside" while the right,bottom values are "outside"; that is, |
| # it's inclusive of the top,left sides only. So, the width is |
| # computed as right-left, rather than right-left+1, etc. |
| wfull = pixel_array_size['width'] |
| hfull = pixel_array_size['height'] |
| xcrop = active_array_size['left'] |
| ycrop = active_array_size['top'] |
| wcrop = active_array_size['right'] - xcrop |
| hcrop = active_array_size['bottom'] - ycrop |
| if not wfull >= wcrop >= 0: |
| raise AssertionError(f'wcrop: {wcrop} not in wfull: {wfull}') |
| if not hfull >= hcrop >= 0: |
| raise AssertionError(f'hcrop: {hcrop} not in hfull: {hfull}') |
| if not wfull - wcrop >= xcrop >= 0: |
| raise AssertionError(f'xcrop: {xcrop} not in wfull-crop: {wfull-wcrop}') |
| if not hfull - hcrop >= ycrop >= 0: |
| raise AssertionError(f'ycrop: {ycrop} not in hfull-crop: {hfull-hcrop}') |
| if w == wfull and h == hfull: |
| # Crop needed; extract the center region. |
| img = img[ycrop:ycrop + hcrop, xcrop:xcrop + wcrop] |
| w = wcrop |
| h = hcrop |
| elif w == wcrop and h == hcrop: |
| logging.debug('Image is already cropped. No cropping needed.') |
| else: |
| raise error_util.CameraItsError('Invalid image size metadata') |
| |
| idxs = get_canonical_cfa_order(props, is_quad_bayer) |
| if is_quad_bayer: |
| # Subsample image array based on the color map. |
| quad_bayer_img = subsample( |
| img, noise_model_constants.NUM_QUAD_BAYER_CHANNELS |
| ) |
| bayer_channels = _convert_quad_bayer_img_to_bayer_channels( |
| quad_bayer_img, props |
| ) |
| return bayer_channels |
| else: |
| # Separate the image planes. |
| imgs = [ |
| img[::2].reshape(w * h // 2)[::2].reshape(h // 2, w // 2, 1), |
| img[::2].reshape(w * h // 2)[1::2].reshape(h // 2, w // 2, 1), |
| img[1::2].reshape(w * h // 2)[::2].reshape(h // 2, w // 2, 1), |
| img[1::2].reshape(w * h // 2)[1::2].reshape(h // 2, w // 2, 1), |
| ] |
| return [imgs[i] for i in idxs] |
| elif cap['format'] in ( |
| 'rawStats', |
| 'raw10Stats', |
| 'rawQuadBayerStats', |
| 'raw10QuadBayerStats', |
| ): |
| assert_props_is_not_none(props) |
| is_quad_bayer = 'QuadBayer' in cap['format'] |
| white_level = get_white_level(props, cap['metadata']) |
| if is_quad_bayer: |
| num_channels = noise_model_constants.NUM_QUAD_BAYER_CHANNELS |
| else: |
| num_channels = noise_model_constants.NUM_BAYER_CHANNELS |
| mean_image, _ = unpack_rawstats_capture(cap, num_channels) |
| if is_quad_bayer: |
| bayer_channels = _convert_quad_bayer_img_to_bayer_channels( |
| mean_image, props |
| ) |
| bayer_channels = [ |
| bayer_channels[i] / white_level for i in range(len(bayer_channels)) |
| ] |
| return bayer_channels |
| else: |
| # Standard Bayer canonical color channel indices. |
| idxs = get_canonical_cfa_order(props, is_quad_bayer=False) |
| # Normalizes the range to [0, 1] without subtracting the black level. |
| return [mean_image[:, :, i] / white_level for i in idxs] |
| else: |
| raise error_util.CameraItsError(f"Invalid format {cap['format']}") |
| |
| |
| def downscale_image(img, f): |
| """Shrink an image by a given integer factor. |
| |
| This function computes output pixel values by averaging over rectangular |
| regions of the input image; it doesn't skip or sample pixels, and all input |
| image pixels are evenly weighted. |
| |
| If the downscaling factor doesn't cleanly divide the width and/or height, |
| then the remaining pixels on the right or bottom edge are discarded prior |
| to the downscaling. |
| |
| Args: |
| img: The input image as an ndarray. |
| f: The downscaling factor, which should be an integer. |
| |
| Returns: |
| The new (downscaled) image, as an ndarray. |
| """ |
| h, w, chans = img.shape |
| f = int(f) |
| assert f >= 1 |
| h = (h//f)*f |
| w = (w//f)*f |
| img = img[0:h:, 0:w:, ::] |
| chs = [] |
| for i in range(chans): |
| ch = img.reshape(h*w*chans)[i::chans].reshape(h, w) |
| ch = ch.reshape(h, w//f, f).mean(2).reshape(h, w//f) |
| ch = ch.T.reshape(w//f, h//f, f).mean(2).T.reshape(h//f, w//f) |
| chs.append(ch.reshape(h*w//(f*f))) |
| img = numpy.vstack(chs).T.reshape(h//f, w//f, chans) |
| return img |
| |
| |
| def convert_raw_to_rgb_image(r_plane, gr_plane, gb_plane, b_plane, props, |
| cap_res, apply_ccm_raw_to_rgb=True): |
| """Convert a Bayer raw-16 image to an RGB image. |
| |
| Includes some extremely rudimentary demosaicking and color processing |
| operations; the output of this function shouldn't be used for any image |
| quality analysis. |
| |
| Args: |
| r_plane: |
| gr_plane: |
| gb_plane: |
| b_plane: Numpy arrays for each color plane |
| in the Bayer image, with pixels in the [0.0, 1.0] range. |
| props: Camera properties object. |
| cap_res: Capture result (metadata) object. |
| apply_ccm_raw_to_rgb: (Optional) boolean to apply color correction matrix. |
| |
| Returns: |
| RGB float-3 image array, with pixel values in [0.0, 1.0] |
| """ |
| # Values required for the RAW to RGB conversion. |
| assert_props_is_not_none(props) |
| white_level = get_white_level(props, cap_res) |
| gains = cap_res['android.colorCorrection.gains'] |
| ccm = cap_res['android.colorCorrection.transform'] |
| |
| # Reorder black levels and gains to R,Gr,Gb,B, to match the order |
| # of the planes. |
| black_levels = get_black_levels(props, cap_res, is_quad_bayer=False) |
| logging.debug('dynamic black levels: %s', black_levels) |
| gains = get_gains_in_canonical_order(props, gains) |
| |
| # Convert CCM from rational to float, as numpy arrays. |
| ccm = numpy.array(capture_request_utils.rational_to_float(ccm)).reshape(3, 3) |
| |
| # Need to scale the image back to the full [0,1] range after subtracting |
| # the black level from each pixel. |
| scale = white_level / (white_level - max(black_levels)) |
| |
| # Three-channel black levels, normalized to [0,1] by white_level. |
| black_levels = numpy.array( |
| [b / white_level for b in [black_levels[i] for i in [0, 1, 3]]]) |
| |
| # Three-channel gains. |
| gains = numpy.array([gains[i] for i in [0, 1, 3]]) |
| |
| h, w = r_plane.shape[:2] |
| img = numpy.dstack([r_plane, (gr_plane + gb_plane) / 2.0, b_plane]) |
| img = (((img.reshape(h, w, 3) - black_levels) * scale) * gains).clip(0.0, 1.0) |
| if apply_ccm_raw_to_rgb: |
| img = numpy.dot( |
| img.reshape(w * h, 3), ccm.T).reshape((h, w, 3)).clip(0.0, 1.0) |
| return img |
| |
| |
| def convert_y8_to_rgb_image(y_plane, w, h): |
| """Convert a Y 8-bit image to an RGB image. |
| |
| Args: |
| y_plane: The packed 8-bit Y plane. |
| w: The width of the image. |
| h: The height of the image. |
| |
| Returns: |
| RGB float-3 image array, with pixel values in [0.0, 1.0]. |
| """ |
| y3 = numpy.dstack([y_plane, y_plane, y_plane]) |
| rgb = numpy.empty([h, w, 3], dtype=numpy.uint8) |
| rgb.reshape(w * h * 3)[:] = y3.reshape(w * h * 3)[:] |
| return rgb.astype(numpy.float32) / 255.0 |
| |
| |
| def write_rgb_uint8_image(img, file_name): |
| """Save a uint8 numpy array image to a file. |
| |
| Supported formats: PNG, JPEG, and others; see PIL docs for more. |
| |
| Args: |
| img: numpy image array data. |
| file_name: path of file to save to; the extension specifies the format. |
| """ |
| if img.dtype != 'uint8': |
| raise AssertionError(f'Incorrect input type: {img.dtype}! Expected: uint8') |
| else: |
| Image.fromarray(img, 'RGB').save(file_name) |
| |
| |
| def write_image(img, fname, apply_gamma=False, is_yuv=False): |
| """Save a float-3 numpy array image to a file. |
| |
| Supported formats: PNG, JPEG, and others; see PIL docs for more. |
| |
| Image can be 3-channel, which is interpreted as RGB or YUV, or can be |
| 1-channel, which is greyscale. |
| |
| Can optionally specify that the image should be gamma-encoded prior to |
| writing it out; this should be done if the image contains linear pixel |
| values, to make the image look "normal". |
| |
| Args: |
| img: Numpy image array data. |
| fname: Path of file to save to; the extension specifies the format. |
| apply_gamma: (Optional) apply gamma to the image prior to writing it. |
| is_yuv: Whether the image is in YUV format. |
| """ |
| if apply_gamma: |
| img = apply_lut_to_image(img, DEFAULT_GAMMA_LUT) |
| (h, w, chans) = img.shape |
| if chans == 3: |
| if not is_yuv: |
| Image.fromarray((img * 255.0).astype(numpy.uint8), 'RGB').save(fname) |
| else: |
| Image.fromarray((img * 255.0).astype(numpy.uint8), 'YCbCr').save(fname) |
| elif chans == 1: |
| img3 = (img * 255.0).astype(numpy.uint8).repeat(3).reshape(h, w, 3) |
| Image.fromarray(img3, 'RGB').save(fname) |
| else: |
| raise error_util.CameraItsError('Unsupported image type') |
| |
| |
| def read_image(fname): |
| """Read image function to match write_image() above.""" |
| return Image.open(fname) |
| |
| |
| def apply_lut_to_image(img, lut): |
| """Applies a LUT to every pixel in a float image array. |
| |
| Internally converts to a 16b integer image, since the LUT can work with up |
| to 16b->16b mappings (i.e. values in the range [0,65535]). The lut can also |
| have fewer than 65536 entries, however it must be sized as a power of 2 |
| (and for smaller luts, the scale must match the bitdepth). |
| |
| For a 16b lut of 65536 entries, the operation performed is: |
| |
| lut[r * 65535] / 65535 -> r' |
| lut[g * 65535] / 65535 -> g' |
| lut[b * 65535] / 65535 -> b' |
| |
| For a 10b lut of 1024 entries, the operation becomes: |
| |
| lut[r * 1023] / 1023 -> r' |
| lut[g * 1023] / 1023 -> g' |
| lut[b * 1023] / 1023 -> b' |
| |
| Args: |
| img: Numpy float image array, with pixel values in [0,1]. |
| lut: Numpy table encoding a LUT, mapping 16b integer values. |
| |
| Returns: |
| Float image array after applying LUT to each pixel. |
| """ |
| n = len(lut) |
| if n <= 0 or n > MAX_LUT_SIZE or (n & (n - 1)) != 0: |
| raise error_util.CameraItsError(f'Invalid arg LUT size: {n}') |
| m = float(n - 1) |
| return (lut[(img * m).astype(numpy.uint16)] / m).astype(numpy.float32) |
| |
| |
| def get_gains_in_canonical_order(props, gains): |
| """Reorders the gains tuple to the canonical R,Gr,Gb,B order. |
| |
| Args: |
| props: Camera properties object. |
| gains: List of 4 values, in R,G_even,G_odd,B order. |
| |
| Returns: |
| List of gains values, in R,Gr,Gb,B order. |
| """ |
| cfa_pat = props['android.sensor.info.colorFilterArrangement'] |
| if cfa_pat in [0, 1]: |
| # RGGB or GRBG, so G_even is Gr |
| return gains |
| elif cfa_pat in [2, 3]: |
| # GBRG or BGGR, so G_even is Gb |
| return [gains[0], gains[2], gains[1], gains[3]] |
| else: |
| raise error_util.CameraItsError('Not supported') |
| |
| |
| def get_white_level(props, cap_metadata=None): |
| """Gets white level to use for a given capture. |
| |
| Uses a dynamic value from the capture result if available, else falls back |
| to the static global value in the camera characteristics. |
| |
| Args: |
| props: The camera properties object. |
| cap_metadata: A capture results metadata object. |
| |
| Returns: |
| Float white level value. |
| """ |
| if (cap_metadata is not None and |
| 'android.sensor.dynamicWhiteLevel' in cap_metadata and |
| cap_metadata['android.sensor.dynamicWhiteLevel'] is not None): |
| white_level = cap_metadata['android.sensor.dynamicWhiteLevel'] |
| logging.debug('dynamic white level: %.2f', white_level) |
| else: |
| white_level = props['android.sensor.info.whiteLevel'] |
| logging.debug('white level: %.2f', white_level) |
| return float(white_level) |
| |
| |
| def get_black_levels(props, cap=None, is_quad_bayer=False): |
| """Gets black levels to use for a given capture. |
| |
| Uses a dynamic value from the capture result if available, else falls back |
| to the static global value in the camera characteristics. |
| |
| Args: |
| props: The camera properties object. |
| cap: A capture object. |
| is_quad_bayer: Boolean flag for Bayer or Quad Bayer capture. |
| |
| Returns: |
| A list of black level values reordered in canonical order. |
| """ |
| if (cap is not None and |
| 'android.sensor.dynamicBlackLevel' in cap and |
| cap['android.sensor.dynamicBlackLevel'] is not None): |
| black_levels = cap['android.sensor.dynamicBlackLevel'] |
| else: |
| black_levels = props['android.sensor.blackLevelPattern'] |
| |
| idxs = get_canonical_cfa_order(props, is_quad_bayer) |
| if is_quad_bayer: |
| ordered_black_levels = [black_levels[i // 4] for i in idxs] |
| else: |
| ordered_black_levels = [black_levels[i] for i in idxs] |
| return ordered_black_levels |
| |
| |
| def get_canonical_cfa_order(props, is_quad_bayer=False): |
| """Returns a list of channel indices according to color filter arrangement. |
| |
| Color filter arrangement index is a integer ranging from 0 to 3, which maps |
| the color filter arrangement in the following way. |
| 0: R, Gr, Gb, B, |
| 1: Gr, R, B, Gb, |
| 2: Gb, B, R, Gr, |
| 3: B, Gb, Gr, R. |
| |
| This function return a list of channel indices that can be used to reorder |
| the stats data as the canonical order: |
| (1) For standard Bayer: R, Gr, Gb, B. |
| (2) For quad Bayer: R0, R1, R2, R3, |
| Gr0, Gr1, Gr2, Gr3, |
| Gb0, Gb1, Gb2, Gb3, |
| B0, B1, B2, B3. |
| |
| Args: |
| props: Camera properties object. |
| is_quad_bayer: Boolean flag for Bayer or Quad Bayer capture. |
| |
| Returns: |
| A list of channel indices with values ranging from: |
| (1) [0, 3] for standard Bayer, |
| (2) [0, 15] for quad Bayer. |
| """ |
| cfa_pat = props['android.sensor.info.colorFilterArrangement'] |
| if not 0 <= cfa_pat < 4: |
| raise error_util.CameraItsError('Not supported') |
| |
| channel_indices = [] |
| if is_quad_bayer: |
| color_map = noise_model_constants.QUAD_BAYER_COLOR_FILTER_MAP[cfa_pat] |
| for ch in noise_model_constants.BAYER_COLORS: |
| channel_indices.extend(color_map[ch]) |
| else: |
| color_map = noise_model_constants.BAYER_COLOR_FILTER_MAP[cfa_pat] |
| channel_indices = [ |
| color_map[ch] for ch in noise_model_constants.BAYER_COLORS |
| ] |
| return channel_indices |
| |
| |
| def unpack_rawstats_capture(cap, num_channels=4): |
| """Unpacks a stats image capture to the mean and variance images. |
| |
| Args: |
| cap: A capture object as returned by its_session_utils.do_capture. |
| num_channels: The number of color channels in the stats image capture, which |
| can be one of noise_model_constants.VALID_NUM_CHANNELS. |
| |
| Returns: |
| Tuple (mean_image var_image) of float-4 images, with non-normalized |
| pixel values computed from the RAW10/RAW16 images on the device |
| """ |
| if cap['format'] not in noise_model_constants.VALID_RAW_STATS_FORMATS: |
| raise AssertionError(f"Unsupported stats format: {cap['format']}") |
| |
| if num_channels not in noise_model_constants.VALID_NUM_CHANNELS: |
| raise AssertionError( |
| f'Unsupported number of channels {num_channels}, which should be in' |
| f' {noise_model_constants.VALID_NUM_CHANNELS}.' |
| ) |
| |
| w = cap['width'] |
| h = cap['height'] |
| img = numpy.ndarray( |
| shape=(2 * h * w * num_channels,), dtype='<f', buffer=cap['data'] |
| ) |
| analysis_image = img.reshape((2, h, w, num_channels)) |
| mean_image = analysis_image[0, :, :, :].reshape(h, w, num_channels) |
| var_image = analysis_image[1, :, :, :].reshape(h, w, num_channels) |
| return mean_image, var_image |
| |
| |
| def get_image_patch(img, xnorm, ynorm, wnorm, hnorm): |
| """Get a patch (tile) of an image. |
| |
| Args: |
| img: Numpy float image array, with pixel values in [0,1]. |
| xnorm: |
| ynorm: |
| wnorm: |
| hnorm: Normalized (in [0,1]) coords for the tile. |
| |
| Returns: |
| Numpy float image array of the patch. |
| """ |
| hfull = img.shape[0] |
| wfull = img.shape[1] |
| xtile = int(math.ceil(xnorm * wfull)) |
| ytile = int(math.ceil(ynorm * hfull)) |
| wtile = int(math.floor(wnorm * wfull)) |
| htile = int(math.floor(hnorm * hfull)) |
| if len(img.shape) == 2: |
| return img[ytile:ytile + htile, xtile:xtile + wtile].copy() |
| else: |
| return img[ytile:ytile + htile, xtile:xtile + wtile, :].copy() |
| |
| |
| def compute_image_means(img): |
| """Calculate the mean of each color channel in the image. |
| |
| Args: |
| img: Numpy float image array, with pixel values in [0,1]. |
| |
| Returns: |
| A list of mean values, one per color channel in the image. |
| """ |
| means = [] |
| chans = img.shape[2] |
| for i in range(chans): |
| means.append(numpy.mean(img[:, :, i], dtype=numpy.float64)) |
| return means |
| |
| |
| def compute_image_variances(img): |
| """Calculate the variance of each color channel in the image. |
| |
| Args: |
| img: Numpy float image array, with pixel values in [0,1]. |
| |
| Returns: |
| A list of variance values, one per color channel in the image. |
| """ |
| variances = [] |
| chans = img.shape[2] |
| for i in range(chans): |
| variances.append(numpy.var(img[:, :, i], dtype=numpy.float64)) |
| return variances |
| |
| |
| def compute_image_sharpness(img): |
| """Calculate the sharpness of input image. |
| |
| Args: |
| img: numpy float RGB/luma image array, with pixel values in [0,1]. |
| |
| Returns: |
| Sharpness estimation value based on the average of gradient magnitude. |
| Larger value means the image is sharper. |
| """ |
| chans = img.shape[2] |
| if chans != 1 and chans != 3: |
| raise AssertionError(f'Not RGB or MONO image! depth: {chans}') |
| if chans == 1: |
| luma = img[:, :, 0] |
| else: |
| luma = convert_rgb_to_grayscale(img) |
| gy, gx = numpy.gradient(luma) |
| return numpy.average(numpy.sqrt(gy*gy + gx*gx)) |
| |
| |
| def compute_image_max_gradients(img): |
| """Calculate the maximum gradient of each color channel in the image. |
| |
| Args: |
| img: Numpy float image array, with pixel values in [0,1]. |
| |
| Returns: |
| A list of gradient max values, one per color channel in the image. |
| """ |
| grads = [] |
| chans = img.shape[2] |
| for i in range(chans): |
| grads.append(numpy.amax(numpy.gradient(img[:, :, i]))) |
| return grads |
| |
| |
| def compute_image_snrs(img): |
| """Calculate the SNR (dB) of each color channel in the image. |
| |
| Args: |
| img: Numpy float image array, with pixel values in [0,1]. |
| |
| Returns: |
| A list of SNR values in dB, one per color channel in the image. |
| """ |
| means = compute_image_means(img) |
| variances = compute_image_variances(img) |
| std_devs = [math.sqrt(v) for v in variances] |
| snrs = [20 * math.log10(m/s) for m, s in zip(means, std_devs)] |
| return snrs |
| |
| |
| def convert_rgb_to_grayscale(img): |
| """Convert a 3-D array RGB image to grayscale image. |
| |
| Args: |
| img: numpy 3-D array RGB image of type [0.0, 1.0] float or [0, 255] uint8. |
| |
| Returns: |
| 2-D grayscale image of same type as input. |
| """ |
| chans = img.shape[2] |
| if chans != 3: |
| raise AssertionError(f'Not an RGB image! Depth: {chans}') |
| img_gray = numpy.dot(img[..., :3], RGB2GRAY_WEIGHTS) |
| if img.dtype == 'uint8': |
| return img_gray.round().astype(numpy.uint8) |
| else: |
| return img_gray |
| |
| |
| def normalize_img(img): |
| """Normalize the image values to between 0 and 1. |
| |
| Args: |
| img: 2-D numpy array of image values |
| Returns: |
| Normalized image |
| """ |
| return (img - numpy.amin(img))/(numpy.amax(img) - numpy.amin(img)) |
| |
| |
| def rotate_img_per_argv(img): |
| """Rotate an image 180 degrees if "rotate" is in argv. |
| |
| Args: |
| img: 2-D numpy array of image values |
| Returns: |
| Rotated image |
| """ |
| img_out = img |
| if 'rotate180' in sys.argv: |
| img_out = numpy.fliplr(numpy.flipud(img_out)) |
| return img_out |
| |
| |
| def compute_image_rms_difference_1d(rgb_x, rgb_y): |
| """Calculate the RMS difference between 2 RBG images as 1D arrays. |
| |
| Args: |
| rgb_x: image array |
| rgb_y: image array |
| |
| Returns: |
| rms_diff |
| """ |
| len_rgb_x = len(rgb_x) |
| len_rgb_y = len(rgb_y) |
| if len_rgb_y != len_rgb_x: |
| raise AssertionError('RGB images have different number of planes! ' |
| f'x: {len_rgb_x}, y: {len_rgb_y}') |
| return math.sqrt(sum([pow(rgb_x[i] - rgb_y[i], 2.0) |
| for i in range(len_rgb_x)]) / len_rgb_x) |
| |
| |
| def compute_image_rms_difference_3d(rgb_x, rgb_y): |
| """Calculate the RMS difference between 2 RBG images as 3D arrays. |
| |
| Args: |
| rgb_x: image array in the form of w * h * channels |
| rgb_y: image array in the form of w * h * channels |
| |
| Returns: |
| rms_diff |
| """ |
| shape_rgb_x = numpy.shape(rgb_x) |
| shape_rgb_y = numpy.shape(rgb_y) |
| if shape_rgb_y != shape_rgb_x: |
| raise AssertionError('RGB images have different number of planes! ' |
| f'x: {shape_rgb_x}, y: {shape_rgb_y}') |
| if len(shape_rgb_x) != 3: |
| raise AssertionError(f'RGB images dimension {len(shape_rgb_x)} is not 3!') |
| |
| mean_square_sum = 0.0 |
| for i in range(shape_rgb_x[0]): |
| for j in range(shape_rgb_x[1]): |
| for k in range(shape_rgb_x[2]): |
| mean_square_sum += pow(float(rgb_x[i][j][k]) - float(rgb_y[i][j][k]), |
| 2.0) |
| return (math.sqrt(mean_square_sum / |
| (shape_rgb_x[0] * shape_rgb_x[1] * shape_rgb_x[2]))) |
| |
| |
| def compute_image_sad(img_x, img_y): |
| """Calculate the sum of absolute differences between 2 images. |
| |
| Args: |
| img_x: image array in the form of w * h * channels |
| img_y: image array in the form of w * h * channels |
| |
| Returns: |
| sad |
| """ |
| img_x = img_x[:, :, 1:].ravel() |
| img_y = img_y[:, :, 1:].ravel() |
| return numpy.sum(numpy.abs(numpy.subtract(img_x, img_y, dtype=float))) |
| |
| |
| def get_img(buffer): |
| """Return a PIL.Image of the capture buffer. |
| |
| Args: |
| buffer: data field from the capture result. |
| |
| Returns: |
| A PIL.Image |
| """ |
| return Image.open(io.BytesIO(buffer)) |
| |
| |
| def jpeg_has_icc_profile(jpeg_img): |
| """Checks if a jpeg PIL.Image has an icc profile attached. |
| |
| Args: |
| jpeg_img: The PIL.Image. |
| |
| Returns: |
| True if an icc profile is present, False otherwise. |
| """ |
| return jpeg_img.info.get('icc_profile') is not None |
| |
| |
| def get_primary_chromaticity(primary): |
| """Given an ImageCms primary, returns just the xy chromaticity coordinates. |
| |
| Args: |
| primary: The primary from the ImageCms profile. |
| |
| Returns: |
| (float, float): The xy chromaticity coordinates of the primary. |
| """ |
| ((_, _, _), (x, y, _)) = primary |
| return x, y |
| |
| |
| def is_jpeg_icc_profile_correct(jpeg_img, color_space, icc_profile_path=None): |
| """Compare a jpeg's icc profile to a color space's expected parameters. |
| |
| Args: |
| jpeg_img: The PIL.Image. |
| color_space: 'DISPLAY_P3' or 'SRGB' |
| icc_profile_path: Optional path to an icc file to be created with the |
| raw contents. |
| |
| Returns: |
| True if the icc profile matches expectations, False otherwise. |
| """ |
| icc = jpeg_img.info.get('icc_profile') |
| f = io.BytesIO(icc) |
| icc_profile = ImageCms.getOpenProfile(f) |
| |
| if icc_profile_path is not None: |
| raw_icc_bytes = f.getvalue() |
| f = open(icc_profile_path, 'wb') |
| f.write(raw_icc_bytes) |
| f.close() |
| |
| cms_profile = icc_profile.profile |
| (rx, ry) = get_primary_chromaticity(cms_profile.red_primary) |
| (gx, gy) = get_primary_chromaticity(cms_profile.green_primary) |
| (bx, by) = get_primary_chromaticity(cms_profile.blue_primary) |
| |
| if color_space == 'DISPLAY_P3': |
| # Expected primaries based on Apple's Display P3 primaries |
| expected_rx = EXPECTED_RX_P3 |
| expected_ry = EXPECTED_RY_P3 |
| expected_gx = EXPECTED_GX_P3 |
| expected_gy = EXPECTED_GY_P3 |
| expected_bx = EXPECTED_BX_P3 |
| expected_by = EXPECTED_BY_P3 |
| elif color_space == 'SRGB': |
| # Expected primaries based on Pixel sRGB profile |
| expected_rx = EXPECTED_RX_SRGB |
| expected_ry = EXPECTED_RY_SRGB |
| expected_gx = EXPECTED_GX_SRGB |
| expected_gy = EXPECTED_GY_SRGB |
| expected_bx = EXPECTED_BX_SRGB |
| expected_by = EXPECTED_BY_SRGB |
| else: |
| # Unsupported color space for comparison |
| return False |
| |
| cmp_values = [ |
| [rx, expected_rx], |
| [ry, expected_ry], |
| [gx, expected_gx], |
| [gy, expected_gy], |
| [bx, expected_bx], |
| [by, expected_by] |
| ] |
| |
| for (actual, expected) in cmp_values: |
| if not math.isclose(actual, expected, abs_tol=0.001): |
| # Values significantly differ |
| return False |
| |
| return True |
| |
| |
| def area_of_triangle(x1, y1, x2, y2, x3, y3): |
| """Calculates the area of a triangle formed by three points. |
| |
| Args: |
| x1 (float): The x-coordinate of the first point. |
| y1 (float): The y-coordinate of the first point. |
| x2 (float): The x-coordinate of the second point. |
| y2 (float): The y-coordinate of the second point. |
| x3 (float): The x-coordinate of the third point. |
| y3 (float): The y-coordinate of the third point. |
| |
| Returns: |
| float: The area of the triangle. |
| """ |
| area = abs((x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)) / 2.0) |
| return area |
| |
| |
| def point_in_triangle(x1, y1, x2, y2, x3, y3, xp, yp, abs_tol): |
| """Checks if the point (xp, yp) is inside the triangle. |
| |
| Args: |
| x1 (float): The x-coordinate of the first point. |
| y1 (float): The y-coordinate of the first point. |
| x2 (float): The x-coordinate of the second point. |
| y2 (float): The y-coordinate of the second point. |
| x3 (float): The x-coordinate of the third point. |
| y3 (float): The y-coordinate of the third point. |
| xp (float): The x-coordinate of the point to check. |
| yp (float): The y-coordinate of the point to check. |
| abs_tol (float): Absolute tolerance amount. |
| |
| Returns: |
| bool: True if the point is inside the triangle, False otherwise. |
| """ |
| a = area_of_triangle(x1, y1, x2, y2, x3, y3) |
| a1 = area_of_triangle(xp, yp, x2, y2, x3, y3) |
| a2 = area_of_triangle(x1, y1, xp, yp, x3, y3) |
| a3 = area_of_triangle(x1, y1, x2, y2, xp, yp) |
| return math.isclose(a, (a1 + a2 + a3), abs_tol=abs_tol) |
| |
| |
| def distance(p, q): |
| """Returns the Euclidean distance from point p to point q. |
| |
| Args: |
| p: an Iterable of numbers |
| q: an Iterable of numbers |
| """ |
| return math.sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q))) |
| |
| |
| def srgb_eotf(img): |
| """Returns the input sRGB-transferred image with a linear transfer function. |
| |
| Args: |
| img: The input image as a numpy array. |
| |
| Returns: |
| numpy.array: The same image with a linear transfer. |
| """ |
| |
| # Source: |
| # https://developer.android.com/reference/android/graphics/ColorSpace.Named#DISPLAY_P3 |
| return numpy.where( |
| img < 0.04045, |
| img / 12.92, |
| numpy.pow((img + 0.055) / 1.055, 2.4) |
| ) |
| |
| |
| def ciexyz_to_xy(img): |
| """Returns the input CIE XYZ image in the CIE xy colorspace. |
| |
| Args: |
| img: The input image as a numpy array |
| |
| Returns: |
| numpy.array: The same image in the CIE xy colorspace. |
| """ |
| img_sums = img.sum(axis=2) |
| img_sums[img_sums == 0] = 1 |
| img[:, :, 0] = img[:, :, 0] / img_sums |
| img[:, :, 1] = img[:, :, 1] / img_sums |
| return img[:, :, :2] |
| |
| |
| def p3_img_has_wide_gamut(wide_img): |
| """Check if a DISPLAY_P3 image contains wide gamut pixels. |
| |
| Given a DISPLAY_P3 image that should have a wider gamut than SRGB, checks all |
| pixel values to see if any reside outside the SRGB gamut. This is done by |
| converting to CIE xy chromaticities using a Bradford chromatic adaptation for |
| consistency with ICC profiles. |
| |
| Args: |
| wide_img: The PIL.Image in the DISPLAY_P3 color space. |
| |
| Returns: |
| True if the gamut of wide_img is greater than that of SRGB. |
| False otherwise. |
| """ |
| w = wide_img.size[0] |
| h = wide_img.size[1] |
| wide_arr = numpy.array(wide_img) |
| linear_arr = srgb_eotf(wide_arr / float(numpy.iinfo(numpy.uint8).max)) |
| |
| xyz_arr = numpy.matmul(linear_arr, P3_TO_XYZ) |
| xy_arr = ciexyz_to_xy(xyz_arr) |
| |
| for y in range(h): |
| for x in range(w): |
| # Check if the pixel chromaticity is inside or outside the SRGB gamut. |
| # This check is not guaranteed not to emit false positives / negatives, |
| # however the probability of either on an arbitrary DISPLAY_P3 camera |
| # capture is exceedingly unlikely. |
| if not point_in_triangle(x1=EXPECTED_RX_SRGB, y1=EXPECTED_RY_SRGB, |
| x2=EXPECTED_GX_SRGB, y2=EXPECTED_GY_SRGB, |
| x3=EXPECTED_BX_SRGB, y3=EXPECTED_BY_SRGB, |
| xp=xy_arr[y][x][0], yp=xy_arr[y][x][1], |
| abs_tol=COLORSPACE_TRIANGLE_AREA_TOL): |
| return True |
| |
| return False |
| |
| |
| def compute_patch_noise(yuv_img, patch_region): |
| """Computes the noise statistics of a flat patch region in an image. |
| |
| For the patch region, the noise statistics are computed for the luma, chroma |
| U, and chroma V channels. |
| |
| Args: |
| yuv_img: The openCV YUV image to compute noise statistics for. |
| patch_region: The (x, y, w, h) region to compute noise statistics for. |
| Returns: |
| A dictionary of noise statistics with keys luma, chroma_u, chroma_v. |
| """ |
| x, y, w, h = patch_region |
| patch = yuv_img[y : y + h, x : x + w] |
| return { |
| 'luma': numpy.std(patch[:, :, 0]), |
| 'chroma_u': numpy.std(patch[:, :, 1]), |
| 'chroma_v': numpy.std(patch[:, :, 2]), |
| } |
| |
| |
| def convert_image_coords_to_sensor_coords( |
| aa_width, aa_height, coords, img_width, img_height): |
| """Transform image coordinates to sensor coordinate system. |
| |
| Calculate the difference between sensor active array and image aspect ratio. |
| Taking the difference into account, figure out if the width or height has been |
| cropped. Using this information, transform the image coordinates to sensor |
| coordinates. |
| |
| Args: |
| aa_width: int; active array width. |
| aa_height: int; active array height. |
| coords: coordinates; a pair of (x, y) coordinates from image. |
| img_width: int; width of image. |
| img_height: int; height of image. |
| Returns: |
| sensor_coords: coordinates; corresponding coordinates on |
| sensor coordinate system. |
| """ |
| # TODO: b/330382627 - find out if distortion correction is ON/OFF |
| aa_aspect_ratio = aa_width / aa_height |
| image_aspect_ratio = img_width / img_height |
| if aa_aspect_ratio >= image_aspect_ratio: |
| # If aa aspect ratio is greater than image aspect ratio, then |
| # sensor width is being cropped |
| aspect_ratio_multiplication_factor = aa_height / img_height |
| crop_width = img_width * aspect_ratio_multiplication_factor |
| buffer = (aa_width - crop_width) / 2 |
| sensor_coords = (coords[0] * aspect_ratio_multiplication_factor + buffer, |
| coords[1] * aspect_ratio_multiplication_factor) |
| else: |
| # If aa aspect ratio is less than image aspect ratio, then |
| # sensor height is being cropped |
| aspect_ratio_multiplication_factor = aa_width / img_width |
| crop_height = img_height * aspect_ratio_multiplication_factor |
| buffer = (aa_height - crop_height) / 2 |
| sensor_coords = (coords[0] * aspect_ratio_multiplication_factor, |
| coords[1] * aspect_ratio_multiplication_factor + buffer) |
| logging.debug('Sensor coordinates: %s', sensor_coords) |
| return sensor_coords |
| |
| |
| def convert_sensor_coords_to_image_coords( |
| aa_width, aa_height, coords, img_width, img_height): |
| """Transform sensor coordinates to image coordinate system. |
| |
| Calculate the difference between sensor active array and image aspect ratio. |
| Taking the difference into account, figure out if the width or height has been |
| cropped. Using this information, transform the sensor coordinates to image |
| coordinates. |
| |
| Args: |
| aa_width: int; active array width. |
| aa_height: int; active array height. |
| coords: coordinates; a pair of (x, y) coordinates from sensor. |
| img_width: int; width of image. |
| img_height: int; height of image. |
| Returns: |
| image_coords: coordinates; corresponding coordinates on |
| image coordinate system. |
| """ |
| aa_aspect_ratio = aa_width / aa_height |
| image_aspect_ratio = img_width / img_height |
| if aa_aspect_ratio >= image_aspect_ratio: |
| # If aa aspect ratio is greater than image aspect ratio, then |
| # sensor width is being cropped |
| aspect_ratio_multiplication_factor = aa_height / img_height |
| crop_width = img_width * aspect_ratio_multiplication_factor |
| buffer = (aa_width - crop_width) / 2 |
| image_coords = ( |
| (coords[0] - buffer) / aspect_ratio_multiplication_factor, |
| coords[1] / aspect_ratio_multiplication_factor) |
| else: |
| # If aa aspect ratio is less than image aspect ratio, then |
| # sensor height is being cropped |
| aspect_ratio_multiplication_factor = aa_width / img_width |
| crop_height = img_height * aspect_ratio_multiplication_factor |
| buffer = (aa_height - crop_height) / 2 |
| image_coords = ( |
| coords[0] / aspect_ratio_multiplication_factor, |
| (coords[1] - buffer) / aspect_ratio_multiplication_factor) |
| logging.debug('Image coordinates: %s', image_coords) |
| return image_coords |
| |
| |
| def mirror_preview_image_by_sensor_orientation( |
| sensor_orientation, input_preview_img): |
| """If testing front camera, mirror preview image to match camera capture. |
| |
| Preview are flipped on device's natural orientation, so for sensor |
| orientation 90 or 270, it is up or down. Sensor orientation 0 or 180 |
| is left or right. |
| |
| Args: |
| sensor_orientation: integer; display orientation in natural position. |
| input_preview_img: numpy array; image extracted from preview recording. |
| Returns: |
| output_preview_img: numpy array; flipped according to natural orientation. |
| """ |
| if sensor_orientation in _NATURAL_ORIENTATION_PORTRAIT: |
| # Opencv expects a numpy array but np.flip generates a 'view' which |
| # doesn't work with opencv. ndarray.copy forces copy instead of view. |
| output_preview_img = numpy.ndarray.copy(numpy.flipud(input_preview_img)) |
| logging.debug( |
| 'Found sensor orientation %d, flipping up down', sensor_orientation) |
| else: |
| output_preview_img = numpy.ndarray.copy(numpy.fliplr(input_preview_img)) |
| logging.debug( |
| 'Found sensor orientation %d, flipping left right', sensor_orientation) |
| |
| return output_preview_img |
| |
| |
| def check_orientation_and_flip(props, img, img_name_stem): |
| """Checks the sensor orientation and flips image. |
| |
| The preview stream captures are flipped based on the sensor |
| orientation while using the front camera. In such cases, check the |
| sensor orientation and flip the image if needed. |
| |
| Args: |
| props: obj; camera properties object. |
| img: numpy array; image. |
| img_name_stem: str; prefix for the img name to be saved. |
| Returns: |
| numpy array of the two images. |
| """ |
| img = mirror_preview_image_by_sensor_orientation( |
| props['android.sensor.orientation'], img) |
| write_image(img / _CH_FULL_SCALE, f'{img_name_stem}.png') |
| return img |
| |
| |
| def get_four_quadrant_patches(img, img_path, suffix, patch_margin): |
| """Divides the img in 4 equal parts and returns the patches. |
| |
| Args: |
| img: openCV image in RGB order. |
| img_path: path to save the image. |
| suffix: str; suffix used to save the image. |
| patch_margin: int; pixels of the margin. |
| Returns: |
| four_quadrant_patches: list of 4 patches. |
| """ |
| num_rows = 2 |
| num_columns = 2 |
| size_x = math.floor(img.shape[1]) |
| size_y = math.floor(img.shape[0]) |
| four_quadrant_patches = [] |
| for i in range(0, num_rows): |
| for j in range(0, num_columns): |
| x = size_x / num_rows * j |
| y = size_y / num_columns * i |
| h = size_y / num_columns |
| w = size_x / num_rows |
| patch = img[int(y):int(y+h), int(x):int(x+w)] |
| patch_path = img_path.with_name( |
| f'{img_path.stem}_{suffix}_patch_' |
| f'{i}_{j}{img_path.suffix}') |
| write_image(patch/_CH_FULL_SCALE, patch_path) |
| cropped_patch = patch[patch_margin:-patch_margin, |
| patch_margin:-patch_margin] |
| four_quadrant_patches.append(cropped_patch) |
| cropped_patch_path = img_path.with_name( |
| f'{img_path.stem}_{suffix}_cropped_patch_' |
| f'{i}_{j}{img_path.suffix}') |
| write_image(cropped_patch/_CH_FULL_SCALE, cropped_patch_path) |
| return four_quadrant_patches |
| |
| |
| def get_lab_means(img, suffix): |
| """Computes the mean of L,a,b img in Cielab color space. |
| |
| Args: |
| img: RGB img in numpy format. |
| suffix: suffix used to save the image. |
| Returns: |
| mean_l, mean_a, mean_b: mean of L, a, b channels. |
| """ |
| # Convert to Lab color space |
| from skimage import color # pylint: disable=g-import-not-at-top |
| img_lab = color.rgb2lab(img) |
| |
| # Extract mean of L* channel (brightness) |
| mean_l = numpy.mean(img_lab[:, :, 0]) |
| # Extract mean of a* channel (red-green axis) |
| mean_a = numpy.mean(img_lab[:, :, 1]) |
| # Extract mean of b* channel (yellow-blue axis) |
| mean_b = numpy.mean(img_lab[:, :, 2]) |
| |
| logging.debug('Image: %s, mean_l: %.2f, mean_a: %.2f, mean_b: %.2f', |
| suffix, mean_l, mean_a, mean_b) |
| return mean_l, mean_a, mean_b |
| |
| |
| def get_slanted_edge_patch(img, img_path, suffix, patch_margin): |
| """Crops the central slanted edge part of the img and returns the patch. |
| |
| Args: |
| img: openCV image in RGB order. |
| img_path: str; path to save the image. |
| suffix: str; suffix used to save the image. ie: 'w' or 'uw'. |
| patch_margin: int; pixels of the margin. |
| Returns: |
| slanted_edge_patch: list of 4 coordinates. |
| """ |
| num_rows = 3 |
| num_columns = 5 |
| size_x = math.floor(img.shape[1]) |
| size_y = math.floor(img.shape[0]) |
| slanted_edge_patch = [] |
| x = int(round(size_x / num_columns * (num_columns // 2), 0)) |
| y = int(round(size_y / num_rows * (num_rows // 2), 0)) |
| w = int(round(size_x / num_columns, 0)) |
| h = int(round(size_y / num_rows, 0)) |
| patch = img[y:y+h, x:x+w] |
| slanted_edge_patch = patch[patch_margin:-patch_margin, |
| patch_margin:-patch_margin] |
| filename_with_path = img_path.with_name( |
| f'{img_path.stem}_{suffix}_slanted_edge{img_path.suffix}' |
| ) |
| write_rgb_uint8_image(slanted_edge_patch, filename_with_path) |
| return slanted_edge_patch |
| |