Rubin Xu | 6e1e26a | 2021-02-10 00:04:48 +0000 | [diff] [blame^] | 1 | // Copyright 2012 the V8 project authors. All rights reserved. |
| 2 | // Use of this source code is governed by a BSD-style license that can be |
| 3 | // found in the LICENSE file. |
| 4 | |
| 5 | #include "src/regexp/regexp.h" |
| 6 | |
| 7 | #include "src/codegen/compilation-cache.h" |
| 8 | #include "src/diagnostics/code-tracer.h" |
| 9 | #include "src/heap/heap-inl.h" |
| 10 | #include "src/objects/js-regexp-inl.h" |
| 11 | #include "src/regexp/experimental/experimental.h" |
| 12 | #include "src/regexp/regexp-bytecode-generator.h" |
| 13 | #include "src/regexp/regexp-bytecodes.h" |
| 14 | #include "src/regexp/regexp-compiler.h" |
| 15 | #include "src/regexp/regexp-dotprinter.h" |
| 16 | #include "src/regexp/regexp-interpreter.h" |
| 17 | #include "src/regexp/regexp-macro-assembler-arch.h" |
| 18 | #include "src/regexp/regexp-macro-assembler-tracer.h" |
| 19 | #include "src/regexp/regexp-parser.h" |
| 20 | #include "src/regexp/regexp-utils.h" |
| 21 | #include "src/strings/string-search.h" |
| 22 | #include "src/utils/ostreams.h" |
| 23 | |
| 24 | namespace v8 { |
| 25 | namespace internal { |
| 26 | |
| 27 | using namespace regexp_compiler_constants; // NOLINT(build/namespaces) |
| 28 | |
| 29 | class RegExpImpl final : public AllStatic { |
| 30 | public: |
| 31 | // Returns a string representation of a regular expression. |
| 32 | // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4. |
| 33 | // This function calls the garbage collector if necessary. |
| 34 | static Handle<String> ToString(Handle<Object> value); |
| 35 | |
| 36 | // Prepares a JSRegExp object with Irregexp-specific data. |
| 37 | static void IrregexpInitialize(Isolate* isolate, Handle<JSRegExp> re, |
| 38 | Handle<String> pattern, JSRegExp::Flags flags, |
| 39 | int capture_count, uint32_t backtrack_limit); |
| 40 | |
| 41 | // Prepare a RegExp for being executed one or more times (using |
| 42 | // IrregexpExecOnce) on the subject. |
| 43 | // This ensures that the regexp is compiled for the subject, and that |
| 44 | // the subject is flat. |
| 45 | // Returns the number of integer spaces required by IrregexpExecOnce |
| 46 | // as its "registers" argument. If the regexp cannot be compiled, |
| 47 | // an exception is set as pending, and this function returns negative. |
| 48 | static int IrregexpPrepare(Isolate* isolate, Handle<JSRegExp> regexp, |
| 49 | Handle<String> subject); |
| 50 | |
| 51 | static void AtomCompile(Isolate* isolate, Handle<JSRegExp> re, |
| 52 | Handle<String> pattern, JSRegExp::Flags flags, |
| 53 | Handle<String> match_pattern); |
| 54 | |
| 55 | static int AtomExecRaw(Isolate* isolate, Handle<JSRegExp> regexp, |
| 56 | Handle<String> subject, int index, int32_t* output, |
| 57 | int output_size); |
| 58 | |
| 59 | static Handle<Object> AtomExec(Isolate* isolate, Handle<JSRegExp> regexp, |
| 60 | Handle<String> subject, int index, |
| 61 | Handle<RegExpMatchInfo> last_match_info); |
| 62 | |
| 63 | // Execute a regular expression on the subject, starting from index. |
| 64 | // If matching succeeds, return the number of matches. This can be larger |
| 65 | // than one in the case of global regular expressions. |
| 66 | // The captures and subcaptures are stored into the registers vector. |
| 67 | // If matching fails, returns RE_FAILURE. |
| 68 | // If execution fails, sets a pending exception and returns RE_EXCEPTION. |
| 69 | static int IrregexpExecRaw(Isolate* isolate, Handle<JSRegExp> regexp, |
| 70 | Handle<String> subject, int index, int32_t* output, |
| 71 | int output_size); |
| 72 | |
| 73 | // Execute an Irregexp bytecode pattern. |
| 74 | // On a successful match, the result is a JSArray containing |
| 75 | // captured positions. On a failure, the result is the null value. |
| 76 | // Returns an empty handle in case of an exception. |
| 77 | V8_WARN_UNUSED_RESULT static MaybeHandle<Object> IrregexpExec( |
| 78 | Isolate* isolate, Handle<JSRegExp> regexp, Handle<String> subject, |
| 79 | int index, Handle<RegExpMatchInfo> last_match_info); |
| 80 | |
| 81 | static bool CompileIrregexp(Isolate* isolate, Handle<JSRegExp> re, |
| 82 | Handle<String> sample_subject, bool is_one_byte); |
| 83 | static inline bool EnsureCompiledIrregexp(Isolate* isolate, |
| 84 | Handle<JSRegExp> re, |
| 85 | Handle<String> sample_subject, |
| 86 | bool is_one_byte); |
| 87 | |
| 88 | // Returns true on success, false on failure. |
| 89 | static bool Compile(Isolate* isolate, Zone* zone, RegExpCompileData* input, |
| 90 | JSRegExp::Flags flags, Handle<String> pattern, |
| 91 | Handle<String> sample_subject, bool is_one_byte, |
| 92 | uint32_t& backtrack_limit); |
| 93 | |
| 94 | // For acting on the JSRegExp data FixedArray. |
| 95 | static int IrregexpMaxRegisterCount(FixedArray re); |
| 96 | static void SetIrregexpMaxRegisterCount(FixedArray re, int value); |
| 97 | static int IrregexpNumberOfCaptures(FixedArray re); |
| 98 | static ByteArray IrregexpByteCode(FixedArray re, bool is_one_byte); |
| 99 | static Code IrregexpNativeCode(FixedArray re, bool is_one_byte); |
| 100 | }; |
| 101 | |
| 102 | MaybeHandle<Object> RegExp::ThrowRegExpException(Isolate* isolate, |
| 103 | Handle<JSRegExp> re, |
| 104 | Handle<String> pattern, |
| 105 | RegExpError error) { |
| 106 | Vector<const char> error_data = CStrVector(RegExpErrorString(error)); |
| 107 | Handle<String> error_text = |
| 108 | isolate->factory() |
| 109 | ->NewStringFromOneByte(Vector<const uint8_t>::cast(error_data)) |
| 110 | .ToHandleChecked(); |
| 111 | THROW_NEW_ERROR( |
| 112 | isolate, |
| 113 | NewSyntaxError(MessageTemplate::kMalformedRegExp, pattern, error_text), |
| 114 | Object); |
| 115 | } |
| 116 | |
| 117 | void RegExp::ThrowRegExpException(Isolate* isolate, Handle<JSRegExp> re, |
| 118 | RegExpError error_text) { |
| 119 | USE(ThrowRegExpException(isolate, re, Handle<String>(re->Pattern(), isolate), |
| 120 | error_text)); |
| 121 | } |
| 122 | |
| 123 | bool RegExp::IsUnmodifiedRegExp(Isolate* isolate, Handle<JSRegExp> regexp) { |
| 124 | return RegExpUtils::IsUnmodifiedRegExp(isolate, regexp); |
| 125 | } |
| 126 | |
| 127 | // Identifies the sort of regexps where the regexp engine is faster |
| 128 | // than the code used for atom matches. |
| 129 | static bool HasFewDifferentCharacters(Handle<String> pattern) { |
| 130 | int length = Min(kMaxLookaheadForBoyerMoore, pattern->length()); |
| 131 | if (length <= kPatternTooShortForBoyerMoore) return false; |
| 132 | const int kMod = 128; |
| 133 | bool character_found[kMod]; |
| 134 | int different = 0; |
| 135 | memset(&character_found[0], 0, sizeof(character_found)); |
| 136 | for (int i = 0; i < length; i++) { |
| 137 | int ch = (pattern->Get(i) & (kMod - 1)); |
| 138 | if (!character_found[ch]) { |
| 139 | character_found[ch] = true; |
| 140 | different++; |
| 141 | // We declare a regexp low-alphabet if it has at least 3 times as many |
| 142 | // characters as it has different characters. |
| 143 | if (different * 3 > length) return false; |
| 144 | } |
| 145 | } |
| 146 | return true; |
| 147 | } |
| 148 | |
| 149 | // Generic RegExp methods. Dispatches to implementation specific methods. |
| 150 | |
| 151 | // static |
| 152 | MaybeHandle<Object> RegExp::Compile(Isolate* isolate, Handle<JSRegExp> re, |
| 153 | Handle<String> pattern, |
| 154 | JSRegExp::Flags flags, |
| 155 | uint32_t backtrack_limit) { |
| 156 | DCHECK(pattern->IsFlat()); |
| 157 | |
| 158 | // Caching is based only on the pattern and flags, but code also differs when |
| 159 | // a backtrack limit is set. A present backtrack limit is very much *not* the |
| 160 | // common case, so just skip the cache for these. |
| 161 | const bool is_compilation_cache_enabled = |
| 162 | (backtrack_limit == JSRegExp::kNoBacktrackLimit); |
| 163 | |
| 164 | Zone zone(isolate->allocator(), ZONE_NAME); |
| 165 | CompilationCache* compilation_cache = nullptr; |
| 166 | if (is_compilation_cache_enabled) { |
| 167 | compilation_cache = isolate->compilation_cache(); |
| 168 | MaybeHandle<FixedArray> maybe_cached = |
| 169 | compilation_cache->LookupRegExp(pattern, flags); |
| 170 | Handle<FixedArray> cached; |
| 171 | if (maybe_cached.ToHandle(&cached)) { |
| 172 | re->set_data(*cached); |
| 173 | return re; |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | PostponeInterruptsScope postpone(isolate); |
| 178 | RegExpCompileData parse_result; |
| 179 | FlatStringReader reader(isolate, pattern); |
| 180 | DCHECK(!isolate->has_pending_exception()); |
| 181 | if (!RegExpParser::ParseRegExp(isolate, &zone, &reader, flags, |
| 182 | &parse_result)) { |
| 183 | // Throw an exception if we fail to parse the pattern. |
| 184 | return RegExp::ThrowRegExpException(isolate, re, pattern, |
| 185 | parse_result.error); |
| 186 | } |
| 187 | |
| 188 | bool has_been_compiled = false; |
| 189 | |
| 190 | if (FLAG_default_to_experimental_regexp_engine && |
| 191 | ExperimentalRegExp::CanBeHandled(parse_result.tree, flags, |
| 192 | parse_result.capture_count)) { |
| 193 | DCHECK(FLAG_enable_experimental_regexp_engine); |
| 194 | ExperimentalRegExp::Initialize(isolate, re, pattern, flags, |
| 195 | parse_result.capture_count); |
| 196 | has_been_compiled = true; |
| 197 | } else if (flags & JSRegExp::kLinear) { |
| 198 | DCHECK(FLAG_enable_experimental_regexp_engine); |
| 199 | if (!ExperimentalRegExp::CanBeHandled(parse_result.tree, flags, |
| 200 | parse_result.capture_count)) { |
| 201 | // TODO(mbid): The error could provide a reason for why the regexp can't |
| 202 | // be executed in linear time (e.g. due to back references). |
| 203 | return RegExp::ThrowRegExpException(isolate, re, pattern, |
| 204 | RegExpError::kNotLinear); |
| 205 | } |
| 206 | ExperimentalRegExp::Initialize(isolate, re, pattern, flags, |
| 207 | parse_result.capture_count); |
| 208 | has_been_compiled = true; |
| 209 | } else if (parse_result.simple && !IgnoreCase(flags) && !IsSticky(flags) && |
| 210 | !HasFewDifferentCharacters(pattern)) { |
| 211 | // Parse-tree is a single atom that is equal to the pattern. |
| 212 | RegExpImpl::AtomCompile(isolate, re, pattern, flags, pattern); |
| 213 | has_been_compiled = true; |
| 214 | } else if (parse_result.tree->IsAtom() && !IsSticky(flags) && |
| 215 | parse_result.capture_count == 0) { |
| 216 | RegExpAtom* atom = parse_result.tree->AsAtom(); |
| 217 | // The pattern source might (?) contain escape sequences, but they're |
| 218 | // resolved in atom_string. |
| 219 | Vector<const uc16> atom_pattern = atom->data(); |
| 220 | Handle<String> atom_string; |
| 221 | ASSIGN_RETURN_ON_EXCEPTION( |
| 222 | isolate, atom_string, |
| 223 | isolate->factory()->NewStringFromTwoByte(atom_pattern), Object); |
| 224 | if (!IgnoreCase(atom->flags()) && !HasFewDifferentCharacters(atom_string)) { |
| 225 | RegExpImpl::AtomCompile(isolate, re, pattern, flags, atom_string); |
| 226 | has_been_compiled = true; |
| 227 | } |
| 228 | } |
| 229 | if (!has_been_compiled) { |
| 230 | RegExpImpl::IrregexpInitialize(isolate, re, pattern, flags, |
| 231 | parse_result.capture_count, backtrack_limit); |
| 232 | } |
| 233 | DCHECK(re->data().IsFixedArray()); |
| 234 | // Compilation succeeded so the data is set on the regexp |
| 235 | // and we can store it in the cache. |
| 236 | Handle<FixedArray> data(FixedArray::cast(re->data()), isolate); |
| 237 | if (is_compilation_cache_enabled) { |
| 238 | compilation_cache->PutRegExp(pattern, flags, data); |
| 239 | } |
| 240 | |
| 241 | return re; |
| 242 | } |
| 243 | |
| 244 | // static |
| 245 | bool RegExp::EnsureFullyCompiled(Isolate* isolate, Handle<JSRegExp> re, |
| 246 | Handle<String> subject) { |
| 247 | switch (re->TypeTag()) { |
| 248 | case JSRegExp::NOT_COMPILED: |
| 249 | UNREACHABLE(); |
| 250 | case JSRegExp::ATOM: |
| 251 | return true; |
| 252 | case JSRegExp::IRREGEXP: |
| 253 | if (RegExpImpl::IrregexpPrepare(isolate, re, subject) == -1) { |
| 254 | DCHECK(isolate->has_pending_exception()); |
| 255 | return false; |
| 256 | } |
| 257 | return true; |
| 258 | case JSRegExp::EXPERIMENTAL: |
| 259 | if (!ExperimentalRegExp::IsCompiled(re, isolate) && |
| 260 | !ExperimentalRegExp::Compile(isolate, re)) { |
| 261 | DCHECK(isolate->has_pending_exception()); |
| 262 | return false; |
| 263 | } |
| 264 | return true; |
| 265 | } |
| 266 | } |
| 267 | |
| 268 | // static |
| 269 | MaybeHandle<Object> RegExp::ExperimentalOneshotExec( |
| 270 | Isolate* isolate, Handle<JSRegExp> regexp, Handle<String> subject, |
| 271 | int index, Handle<RegExpMatchInfo> last_match_info) { |
| 272 | return ExperimentalRegExp::OneshotExec(isolate, regexp, subject, index, |
| 273 | last_match_info); |
| 274 | } |
| 275 | |
| 276 | // static |
| 277 | MaybeHandle<Object> RegExp::Exec(Isolate* isolate, Handle<JSRegExp> regexp, |
| 278 | Handle<String> subject, int index, |
| 279 | Handle<RegExpMatchInfo> last_match_info) { |
| 280 | switch (regexp->TypeTag()) { |
| 281 | case JSRegExp::NOT_COMPILED: |
| 282 | UNREACHABLE(); |
| 283 | case JSRegExp::ATOM: |
| 284 | return RegExpImpl::AtomExec(isolate, regexp, subject, index, |
| 285 | last_match_info); |
| 286 | case JSRegExp::IRREGEXP: |
| 287 | return RegExpImpl::IrregexpExec(isolate, regexp, subject, index, |
| 288 | last_match_info); |
| 289 | case JSRegExp::EXPERIMENTAL: |
| 290 | return ExperimentalRegExp::Exec(isolate, regexp, subject, index, |
| 291 | last_match_info); |
| 292 | } |
| 293 | } |
| 294 | |
| 295 | // RegExp Atom implementation: Simple string search using indexOf. |
| 296 | |
| 297 | void RegExpImpl::AtomCompile(Isolate* isolate, Handle<JSRegExp> re, |
| 298 | Handle<String> pattern, JSRegExp::Flags flags, |
| 299 | Handle<String> match_pattern) { |
| 300 | isolate->factory()->SetRegExpAtomData(re, pattern, flags, match_pattern); |
| 301 | } |
| 302 | |
| 303 | static void SetAtomLastCapture(Isolate* isolate, |
| 304 | Handle<RegExpMatchInfo> last_match_info, |
| 305 | String subject, int from, int to) { |
| 306 | SealHandleScope shs(isolate); |
| 307 | last_match_info->SetNumberOfCaptureRegisters(2); |
| 308 | last_match_info->SetLastSubject(subject); |
| 309 | last_match_info->SetLastInput(subject); |
| 310 | last_match_info->SetCapture(0, from); |
| 311 | last_match_info->SetCapture(1, to); |
| 312 | } |
| 313 | |
| 314 | int RegExpImpl::AtomExecRaw(Isolate* isolate, Handle<JSRegExp> regexp, |
| 315 | Handle<String> subject, int index, int32_t* output, |
| 316 | int output_size) { |
| 317 | DCHECK_LE(0, index); |
| 318 | DCHECK_LE(index, subject->length()); |
| 319 | |
| 320 | subject = String::Flatten(isolate, subject); |
| 321 | DisallowHeapAllocation no_gc; // ensure vectors stay valid |
| 322 | |
| 323 | String needle = String::cast(regexp->DataAt(JSRegExp::kAtomPatternIndex)); |
| 324 | int needle_len = needle.length(); |
| 325 | DCHECK(needle.IsFlat()); |
| 326 | DCHECK_LT(0, needle_len); |
| 327 | |
| 328 | if (index + needle_len > subject->length()) { |
| 329 | return RegExp::RE_FAILURE; |
| 330 | } |
| 331 | |
| 332 | for (int i = 0; i < output_size; i += 2) { |
| 333 | String::FlatContent needle_content = needle.GetFlatContent(no_gc); |
| 334 | String::FlatContent subject_content = subject->GetFlatContent(no_gc); |
| 335 | DCHECK(needle_content.IsFlat()); |
| 336 | DCHECK(subject_content.IsFlat()); |
| 337 | // dispatch on type of strings |
| 338 | index = |
| 339 | (needle_content.IsOneByte() |
| 340 | ? (subject_content.IsOneByte() |
| 341 | ? SearchString(isolate, subject_content.ToOneByteVector(), |
| 342 | needle_content.ToOneByteVector(), index) |
| 343 | : SearchString(isolate, subject_content.ToUC16Vector(), |
| 344 | needle_content.ToOneByteVector(), index)) |
| 345 | : (subject_content.IsOneByte() |
| 346 | ? SearchString(isolate, subject_content.ToOneByteVector(), |
| 347 | needle_content.ToUC16Vector(), index) |
| 348 | : SearchString(isolate, subject_content.ToUC16Vector(), |
| 349 | needle_content.ToUC16Vector(), index))); |
| 350 | if (index == -1) { |
| 351 | return i / 2; // Return number of matches. |
| 352 | } else { |
| 353 | output[i] = index; |
| 354 | output[i + 1] = index + needle_len; |
| 355 | index += needle_len; |
| 356 | } |
| 357 | } |
| 358 | return output_size / 2; |
| 359 | } |
| 360 | |
| 361 | Handle<Object> RegExpImpl::AtomExec(Isolate* isolate, Handle<JSRegExp> re, |
| 362 | Handle<String> subject, int index, |
| 363 | Handle<RegExpMatchInfo> last_match_info) { |
| 364 | static const int kNumRegisters = 2; |
| 365 | STATIC_ASSERT(kNumRegisters <= Isolate::kJSRegexpStaticOffsetsVectorSize); |
| 366 | int32_t* output_registers = isolate->jsregexp_static_offsets_vector(); |
| 367 | |
| 368 | int res = |
| 369 | AtomExecRaw(isolate, re, subject, index, output_registers, kNumRegisters); |
| 370 | |
| 371 | if (res == RegExp::RE_FAILURE) return isolate->factory()->null_value(); |
| 372 | |
| 373 | DCHECK_EQ(res, RegExp::RE_SUCCESS); |
| 374 | SealHandleScope shs(isolate); |
| 375 | SetAtomLastCapture(isolate, last_match_info, *subject, output_registers[0], |
| 376 | output_registers[1]); |
| 377 | return last_match_info; |
| 378 | } |
| 379 | |
| 380 | // Irregexp implementation. |
| 381 | |
| 382 | // Ensures that the regexp object contains a compiled version of the |
| 383 | // source for either one-byte or two-byte subject strings. |
| 384 | // If the compiled version doesn't already exist, it is compiled |
| 385 | // from the source pattern. |
| 386 | // If compilation fails, an exception is thrown and this function |
| 387 | // returns false. |
| 388 | bool RegExpImpl::EnsureCompiledIrregexp(Isolate* isolate, Handle<JSRegExp> re, |
| 389 | Handle<String> sample_subject, |
| 390 | bool is_one_byte) { |
| 391 | Object compiled_code = re->Code(is_one_byte); |
| 392 | Object bytecode = re->Bytecode(is_one_byte); |
| 393 | bool needs_initial_compilation = |
| 394 | compiled_code == Smi::FromInt(JSRegExp::kUninitializedValue); |
| 395 | // Recompile is needed when we're dealing with the first execution of the |
| 396 | // regexp after the decision to tier up has been made. If the tiering up |
| 397 | // strategy is not in use, this value is always false. |
| 398 | bool needs_tier_up_compilation = |
| 399 | re->MarkedForTierUp() && bytecode.IsByteArray(); |
| 400 | |
| 401 | if (FLAG_trace_regexp_tier_up && needs_tier_up_compilation) { |
| 402 | PrintF("JSRegExp object %p needs tier-up compilation\n", |
| 403 | reinterpret_cast<void*>(re->ptr())); |
| 404 | } |
| 405 | |
| 406 | if (!needs_initial_compilation && !needs_tier_up_compilation) { |
| 407 | DCHECK(compiled_code.IsCode()); |
| 408 | DCHECK_IMPLIES(FLAG_regexp_interpret_all, bytecode.IsByteArray()); |
| 409 | return true; |
| 410 | } |
| 411 | |
| 412 | DCHECK_IMPLIES(needs_tier_up_compilation, bytecode.IsByteArray()); |
| 413 | |
| 414 | return CompileIrregexp(isolate, re, sample_subject, is_one_byte); |
| 415 | } |
| 416 | |
| 417 | #ifdef DEBUG |
| 418 | namespace { |
| 419 | |
| 420 | bool RegExpCodeIsValidForPreCompilation(Handle<JSRegExp> re, bool is_one_byte) { |
| 421 | Object entry = re->Code(is_one_byte); |
| 422 | Object bytecode = re->Bytecode(is_one_byte); |
| 423 | // If we're not using the tier-up strategy, entry can only be a smi |
| 424 | // representing an uncompiled regexp here. If we're using the tier-up |
| 425 | // strategy, entry can still be a smi representing an uncompiled regexp, when |
| 426 | // compiling the regexp before the tier-up, or it can contain a trampoline to |
| 427 | // the regexp interpreter, in which case the bytecode field contains compiled |
| 428 | // bytecode, when recompiling the regexp after the tier-up. If the |
| 429 | // tier-up was forced, which happens for global replaces, entry is a smi |
| 430 | // representing an uncompiled regexp, even though we're "recompiling" after |
| 431 | // the tier-up. |
| 432 | if (re->ShouldProduceBytecode()) { |
| 433 | DCHECK(entry.IsSmi()); |
| 434 | DCHECK(bytecode.IsSmi()); |
| 435 | int entry_value = Smi::ToInt(entry); |
| 436 | int bytecode_value = Smi::ToInt(bytecode); |
| 437 | DCHECK_EQ(JSRegExp::kUninitializedValue, entry_value); |
| 438 | DCHECK_EQ(JSRegExp::kUninitializedValue, bytecode_value); |
| 439 | } else { |
| 440 | DCHECK(entry.IsSmi() || (entry.IsCode() && bytecode.IsByteArray())); |
| 441 | } |
| 442 | |
| 443 | return true; |
| 444 | } |
| 445 | |
| 446 | } // namespace |
| 447 | #endif |
| 448 | |
| 449 | bool RegExpImpl::CompileIrregexp(Isolate* isolate, Handle<JSRegExp> re, |
| 450 | Handle<String> sample_subject, |
| 451 | bool is_one_byte) { |
| 452 | // Compile the RegExp. |
| 453 | Zone zone(isolate->allocator(), ZONE_NAME); |
| 454 | PostponeInterruptsScope postpone(isolate); |
| 455 | |
| 456 | DCHECK(RegExpCodeIsValidForPreCompilation(re, is_one_byte)); |
| 457 | |
| 458 | JSRegExp::Flags flags = re->GetFlags(); |
| 459 | |
| 460 | Handle<String> pattern(re->Pattern(), isolate); |
| 461 | pattern = String::Flatten(isolate, pattern); |
| 462 | RegExpCompileData compile_data; |
| 463 | FlatStringReader reader(isolate, pattern); |
| 464 | if (!RegExpParser::ParseRegExp(isolate, &zone, &reader, flags, |
| 465 | &compile_data)) { |
| 466 | // Throw an exception if we fail to parse the pattern. |
| 467 | // THIS SHOULD NOT HAPPEN. We already pre-parsed it successfully once. |
| 468 | USE(RegExp::ThrowRegExpException(isolate, re, pattern, compile_data.error)); |
| 469 | return false; |
| 470 | } |
| 471 | // The compilation target is a kBytecode if we're interpreting all regexp |
| 472 | // objects, or if we're using the tier-up strategy but the tier-up hasn't |
| 473 | // happened yet. The compilation target is a kNative if we're using the |
| 474 | // tier-up strategy and we need to recompile to tier-up, or if we're producing |
| 475 | // native code for all regexp objects. |
| 476 | compile_data.compilation_target = re->ShouldProduceBytecode() |
| 477 | ? RegExpCompilationTarget::kBytecode |
| 478 | : RegExpCompilationTarget::kNative; |
| 479 | uint32_t backtrack_limit = re->BacktrackLimit(); |
| 480 | const bool compilation_succeeded = |
| 481 | Compile(isolate, &zone, &compile_data, flags, pattern, sample_subject, |
| 482 | is_one_byte, backtrack_limit); |
| 483 | if (!compilation_succeeded) { |
| 484 | DCHECK(compile_data.error != RegExpError::kNone); |
| 485 | RegExp::ThrowRegExpException(isolate, re, compile_data.error); |
| 486 | return false; |
| 487 | } |
| 488 | |
| 489 | Handle<FixedArray> data = |
| 490 | Handle<FixedArray>(FixedArray::cast(re->data()), isolate); |
| 491 | if (compile_data.compilation_target == RegExpCompilationTarget::kNative) { |
| 492 | data->set(JSRegExp::code_index(is_one_byte), *compile_data.code); |
| 493 | // Reset bytecode to uninitialized. In case we use tier-up we know that |
| 494 | // tier-up has happened this way. |
| 495 | data->set(JSRegExp::bytecode_index(is_one_byte), |
| 496 | Smi::FromInt(JSRegExp::kUninitializedValue)); |
| 497 | } else { |
| 498 | DCHECK_EQ(compile_data.compilation_target, |
| 499 | RegExpCompilationTarget::kBytecode); |
| 500 | // Store code generated by compiler in bytecode and trampoline to |
| 501 | // interpreter in code. |
| 502 | data->set(JSRegExp::bytecode_index(is_one_byte), *compile_data.code); |
| 503 | Handle<Code> trampoline = |
| 504 | BUILTIN_CODE(isolate, RegExpInterpreterTrampoline); |
| 505 | data->set(JSRegExp::code_index(is_one_byte), *trampoline); |
| 506 | } |
| 507 | re->SetCaptureNameMap(compile_data.capture_name_map); |
| 508 | int register_max = IrregexpMaxRegisterCount(*data); |
| 509 | if (compile_data.register_count > register_max) { |
| 510 | SetIrregexpMaxRegisterCount(*data, compile_data.register_count); |
| 511 | } |
| 512 | data->set(JSRegExp::kIrregexpBacktrackLimit, Smi::FromInt(backtrack_limit)); |
| 513 | |
| 514 | if (FLAG_trace_regexp_tier_up) { |
| 515 | PrintF("JSRegExp object %p %s size: %d\n", |
| 516 | reinterpret_cast<void*>(re->ptr()), |
| 517 | re->ShouldProduceBytecode() ? "bytecode" : "native code", |
| 518 | re->ShouldProduceBytecode() |
| 519 | ? IrregexpByteCode(*data, is_one_byte).Size() |
| 520 | : IrregexpNativeCode(*data, is_one_byte).Size()); |
| 521 | } |
| 522 | |
| 523 | return true; |
| 524 | } |
| 525 | |
| 526 | int RegExpImpl::IrregexpMaxRegisterCount(FixedArray re) { |
| 527 | return Smi::ToInt(re.get(JSRegExp::kIrregexpMaxRegisterCountIndex)); |
| 528 | } |
| 529 | |
| 530 | void RegExpImpl::SetIrregexpMaxRegisterCount(FixedArray re, int value) { |
| 531 | re.set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(value)); |
| 532 | } |
| 533 | |
| 534 | int RegExpImpl::IrregexpNumberOfCaptures(FixedArray re) { |
| 535 | return Smi::ToInt(re.get(JSRegExp::kIrregexpCaptureCountIndex)); |
| 536 | } |
| 537 | |
| 538 | ByteArray RegExpImpl::IrregexpByteCode(FixedArray re, bool is_one_byte) { |
| 539 | return ByteArray::cast(re.get(JSRegExp::bytecode_index(is_one_byte))); |
| 540 | } |
| 541 | |
| 542 | Code RegExpImpl::IrregexpNativeCode(FixedArray re, bool is_one_byte) { |
| 543 | return Code::cast(re.get(JSRegExp::code_index(is_one_byte))); |
| 544 | } |
| 545 | |
| 546 | void RegExpImpl::IrregexpInitialize(Isolate* isolate, Handle<JSRegExp> re, |
| 547 | Handle<String> pattern, |
| 548 | JSRegExp::Flags flags, int capture_count, |
| 549 | uint32_t backtrack_limit) { |
| 550 | // Initialize compiled code entries to null. |
| 551 | isolate->factory()->SetRegExpIrregexpData(re, pattern, flags, capture_count, |
| 552 | backtrack_limit); |
| 553 | } |
| 554 | |
| 555 | // static |
| 556 | int RegExpImpl::IrregexpPrepare(Isolate* isolate, Handle<JSRegExp> regexp, |
| 557 | Handle<String> subject) { |
| 558 | DCHECK(subject->IsFlat()); |
| 559 | |
| 560 | // Check representation of the underlying storage. |
| 561 | bool is_one_byte = String::IsOneByteRepresentationUnderneath(*subject); |
| 562 | if (!RegExpImpl::EnsureCompiledIrregexp(isolate, regexp, subject, |
| 563 | is_one_byte)) { |
| 564 | return -1; |
| 565 | } |
| 566 | |
| 567 | // Only reserve room for output captures. Internal registers are allocated by |
| 568 | // the engine. |
| 569 | return JSRegExp::RegistersForCaptureCount(regexp->CaptureCount()); |
| 570 | } |
| 571 | |
| 572 | int RegExpImpl::IrregexpExecRaw(Isolate* isolate, Handle<JSRegExp> regexp, |
| 573 | Handle<String> subject, int index, |
| 574 | int32_t* output, int output_size) { |
| 575 | DCHECK_LE(0, index); |
| 576 | DCHECK_LE(index, subject->length()); |
| 577 | DCHECK(subject->IsFlat()); |
| 578 | DCHECK_GE(output_size, |
| 579 | JSRegExp::RegistersForCaptureCount(regexp->CaptureCount())); |
| 580 | |
| 581 | bool is_one_byte = String::IsOneByteRepresentationUnderneath(*subject); |
| 582 | |
| 583 | if (!regexp->ShouldProduceBytecode()) { |
| 584 | do { |
| 585 | EnsureCompiledIrregexp(isolate, regexp, subject, is_one_byte); |
| 586 | // The stack is used to allocate registers for the compiled regexp code. |
| 587 | // This means that in case of failure, the output registers array is left |
| 588 | // untouched and contains the capture results from the previous successful |
| 589 | // match. We can use that to set the last match info lazily. |
| 590 | int res = NativeRegExpMacroAssembler::Match(regexp, subject, output, |
| 591 | output_size, index, isolate); |
| 592 | if (res != NativeRegExpMacroAssembler::RETRY) { |
| 593 | DCHECK(res != NativeRegExpMacroAssembler::EXCEPTION || |
| 594 | isolate->has_pending_exception()); |
| 595 | STATIC_ASSERT(static_cast<int>(NativeRegExpMacroAssembler::SUCCESS) == |
| 596 | RegExp::RE_SUCCESS); |
| 597 | STATIC_ASSERT(static_cast<int>(NativeRegExpMacroAssembler::FAILURE) == |
| 598 | RegExp::RE_FAILURE); |
| 599 | STATIC_ASSERT(static_cast<int>(NativeRegExpMacroAssembler::EXCEPTION) == |
| 600 | RegExp::RE_EXCEPTION); |
| 601 | return res; |
| 602 | } |
| 603 | // If result is RETRY, the string has changed representation, and we |
| 604 | // must restart from scratch. |
| 605 | // In this case, it means we must make sure we are prepared to handle |
| 606 | // the, potentially, different subject (the string can switch between |
| 607 | // being internal and external, and even between being Latin1 and UC16, |
| 608 | // but the characters are always the same). |
| 609 | is_one_byte = String::IsOneByteRepresentationUnderneath(*subject); |
| 610 | } while (true); |
| 611 | UNREACHABLE(); |
| 612 | } else { |
| 613 | DCHECK(regexp->ShouldProduceBytecode()); |
| 614 | |
| 615 | do { |
| 616 | IrregexpInterpreter::Result result = |
| 617 | IrregexpInterpreter::MatchForCallFromRuntime( |
| 618 | isolate, regexp, subject, output, output_size, index); |
| 619 | DCHECK_IMPLIES(result == IrregexpInterpreter::EXCEPTION, |
| 620 | isolate->has_pending_exception()); |
| 621 | |
| 622 | switch (result) { |
| 623 | case IrregexpInterpreter::SUCCESS: |
| 624 | case IrregexpInterpreter::EXCEPTION: |
| 625 | case IrregexpInterpreter::FAILURE: |
| 626 | case IrregexpInterpreter::FALLBACK_TO_EXPERIMENTAL: |
| 627 | return result; |
| 628 | case IrregexpInterpreter::RETRY: |
| 629 | // The string has changed representation, and we must restart the |
| 630 | // match. |
| 631 | // We need to reset the tier up to start over with compilation. |
| 632 | if (FLAG_regexp_tier_up) regexp->ResetLastTierUpTick(); |
| 633 | is_one_byte = String::IsOneByteRepresentationUnderneath(*subject); |
| 634 | EnsureCompiledIrregexp(isolate, regexp, subject, is_one_byte); |
| 635 | break; |
| 636 | } |
| 637 | } while (true); |
| 638 | UNREACHABLE(); |
| 639 | } |
| 640 | } |
| 641 | |
| 642 | MaybeHandle<Object> RegExpImpl::IrregexpExec( |
| 643 | Isolate* isolate, Handle<JSRegExp> regexp, Handle<String> subject, |
| 644 | int previous_index, Handle<RegExpMatchInfo> last_match_info) { |
| 645 | DCHECK_EQ(regexp->TypeTag(), JSRegExp::IRREGEXP); |
| 646 | |
| 647 | subject = String::Flatten(isolate, subject); |
| 648 | |
| 649 | #ifdef DEBUG |
| 650 | if (FLAG_trace_regexp_bytecodes && regexp->ShouldProduceBytecode()) { |
| 651 | String pattern = regexp->Pattern(); |
| 652 | PrintF("\n\nRegexp match: /%s/\n\n", pattern.ToCString().get()); |
| 653 | PrintF("\n\nSubject string: '%s'\n\n", subject->ToCString().get()); |
| 654 | } |
| 655 | #endif |
| 656 | |
| 657 | // For very long subject strings, the regexp interpreter is currently much |
| 658 | // slower than the jitted code execution. If the tier-up strategy is turned |
| 659 | // on, we want to avoid this performance penalty so we eagerly tier-up if the |
| 660 | // subject string length is equal or greater than the given heuristic value. |
| 661 | if (FLAG_regexp_tier_up && |
| 662 | subject->length() >= JSRegExp::kTierUpForSubjectLengthValue) { |
| 663 | regexp->MarkTierUpForNextExec(); |
| 664 | if (FLAG_trace_regexp_tier_up) { |
| 665 | PrintF( |
| 666 | "Forcing tier-up for very long strings in " |
| 667 | "RegExpImpl::IrregexpExec\n"); |
| 668 | } |
| 669 | } |
| 670 | |
| 671 | // Prepare space for the return values. |
| 672 | int required_registers = |
| 673 | RegExpImpl::IrregexpPrepare(isolate, regexp, subject); |
| 674 | if (required_registers < 0) { |
| 675 | // Compiling failed with an exception. |
| 676 | DCHECK(isolate->has_pending_exception()); |
| 677 | return MaybeHandle<Object>(); |
| 678 | } |
| 679 | |
| 680 | int32_t* output_registers = nullptr; |
| 681 | if (required_registers > Isolate::kJSRegexpStaticOffsetsVectorSize) { |
| 682 | output_registers = NewArray<int32_t>(required_registers); |
| 683 | } |
| 684 | std::unique_ptr<int32_t[]> auto_release(output_registers); |
| 685 | if (output_registers == nullptr) { |
| 686 | output_registers = isolate->jsregexp_static_offsets_vector(); |
| 687 | } |
| 688 | |
| 689 | int res = |
| 690 | RegExpImpl::IrregexpExecRaw(isolate, regexp, subject, previous_index, |
| 691 | output_registers, required_registers); |
| 692 | |
| 693 | if (res == RegExp::RE_SUCCESS) { |
| 694 | int capture_count = regexp->CaptureCount(); |
| 695 | return RegExp::SetLastMatchInfo(isolate, last_match_info, subject, |
| 696 | capture_count, output_registers); |
| 697 | } else if (res == RegExp::RE_FALLBACK_TO_EXPERIMENTAL) { |
| 698 | return ExperimentalRegExp::OneshotExec(isolate, regexp, subject, |
| 699 | previous_index, last_match_info); |
| 700 | } else if (res == RegExp::RE_EXCEPTION) { |
| 701 | DCHECK(isolate->has_pending_exception()); |
| 702 | return MaybeHandle<Object>(); |
| 703 | } else { |
| 704 | DCHECK(res == RegExp::RE_FAILURE); |
| 705 | return isolate->factory()->null_value(); |
| 706 | } |
| 707 | } |
| 708 | |
| 709 | // static |
| 710 | Handle<RegExpMatchInfo> RegExp::SetLastMatchInfo( |
| 711 | Isolate* isolate, Handle<RegExpMatchInfo> last_match_info, |
| 712 | Handle<String> subject, int capture_count, int32_t* match) { |
| 713 | // This is the only place where match infos can grow. If, after executing the |
| 714 | // regexp, RegExpExecStub finds that the match info is too small, it restarts |
| 715 | // execution in RegExpImpl::Exec, which finally grows the match info right |
| 716 | // here. |
| 717 | Handle<RegExpMatchInfo> result = |
| 718 | RegExpMatchInfo::ReserveCaptures(isolate, last_match_info, capture_count); |
| 719 | if (*result != *last_match_info) { |
| 720 | if (*last_match_info == *isolate->regexp_last_match_info()) { |
| 721 | // This inner condition is only needed for special situations like the |
| 722 | // regexp fuzzer, where we pass our own custom RegExpMatchInfo to |
| 723 | // RegExpImpl::Exec; there actually want to bypass the Isolate's match |
| 724 | // info and execute the regexp without side effects. |
| 725 | isolate->native_context()->set_regexp_last_match_info(*result); |
| 726 | } |
| 727 | } |
| 728 | |
| 729 | int capture_register_count = |
| 730 | JSRegExp::RegistersForCaptureCount(capture_count); |
| 731 | DisallowHeapAllocation no_allocation; |
| 732 | if (match != nullptr) { |
| 733 | for (int i = 0; i < capture_register_count; i += 2) { |
| 734 | result->SetCapture(i, match[i]); |
| 735 | result->SetCapture(i + 1, match[i + 1]); |
| 736 | } |
| 737 | } |
| 738 | result->SetLastSubject(*subject); |
| 739 | result->SetLastInput(*subject); |
| 740 | return result; |
| 741 | } |
| 742 | |
| 743 | // static |
| 744 | void RegExp::DotPrintForTesting(const char* label, RegExpNode* node) { |
| 745 | DotPrinter::DotPrint(label, node); |
| 746 | } |
| 747 | |
| 748 | namespace { |
| 749 | |
| 750 | // Returns true if we've either generated too much irregex code within this |
| 751 | // isolate, or the pattern string is too long. |
| 752 | bool TooMuchRegExpCode(Isolate* isolate, Handle<String> pattern) { |
| 753 | // Limit the space regexps take up on the heap. In order to limit this we |
| 754 | // would like to keep track of the amount of regexp code on the heap. This |
| 755 | // is not tracked, however. As a conservative approximation we track the |
| 756 | // total regexp code compiled including code that has subsequently been freed |
| 757 | // and the total executable memory at any point. |
| 758 | static constexpr size_t kRegExpExecutableMemoryLimit = 16 * MB; |
| 759 | static constexpr size_t kRegExpCompiledLimit = 1 * MB; |
| 760 | |
| 761 | Heap* heap = isolate->heap(); |
| 762 | if (pattern->length() > RegExp::kRegExpTooLargeToOptimize) return true; |
| 763 | return (isolate->total_regexp_code_generated() > kRegExpCompiledLimit && |
| 764 | heap->CommittedMemoryExecutable() > kRegExpExecutableMemoryLimit); |
| 765 | } |
| 766 | |
| 767 | } // namespace |
| 768 | |
| 769 | // static |
| 770 | bool RegExp::CompileForTesting(Isolate* isolate, Zone* zone, |
| 771 | RegExpCompileData* data, JSRegExp::Flags flags, |
| 772 | Handle<String> pattern, |
| 773 | Handle<String> sample_subject, |
| 774 | bool is_one_byte) { |
| 775 | uint32_t backtrack_limit = JSRegExp::kNoBacktrackLimit; |
| 776 | return RegExpImpl::Compile(isolate, zone, data, flags, pattern, |
| 777 | sample_subject, is_one_byte, backtrack_limit); |
| 778 | } |
| 779 | |
| 780 | bool RegExpImpl::Compile(Isolate* isolate, Zone* zone, RegExpCompileData* data, |
| 781 | JSRegExp::Flags flags, Handle<String> pattern, |
| 782 | Handle<String> sample_subject, bool is_one_byte, |
| 783 | uint32_t& backtrack_limit) { |
| 784 | if (JSRegExp::RegistersForCaptureCount(data->capture_count) > |
| 785 | RegExpMacroAssembler::kMaxRegisterCount) { |
| 786 | data->error = RegExpError::kTooLarge; |
| 787 | return false; |
| 788 | } |
| 789 | |
| 790 | RegExpCompiler compiler(isolate, zone, data->capture_count, is_one_byte); |
| 791 | |
| 792 | if (compiler.optimize()) { |
| 793 | compiler.set_optimize(!TooMuchRegExpCode(isolate, pattern)); |
| 794 | } |
| 795 | |
| 796 | // Sample some characters from the middle of the string. |
| 797 | static const int kSampleSize = 128; |
| 798 | |
| 799 | sample_subject = String::Flatten(isolate, sample_subject); |
| 800 | int chars_sampled = 0; |
| 801 | int half_way = (sample_subject->length() - kSampleSize) / 2; |
| 802 | for (int i = Max(0, half_way); |
| 803 | i < sample_subject->length() && chars_sampled < kSampleSize; |
| 804 | i++, chars_sampled++) { |
| 805 | compiler.frequency_collator()->CountCharacter(sample_subject->Get(i)); |
| 806 | } |
| 807 | |
| 808 | data->node = compiler.PreprocessRegExp(data, flags, is_one_byte); |
| 809 | data->error = AnalyzeRegExp(isolate, is_one_byte, data->node); |
| 810 | if (data->error != RegExpError::kNone) { |
| 811 | return false; |
| 812 | } |
| 813 | |
| 814 | // Create the correct assembler for the architecture. |
| 815 | std::unique_ptr<RegExpMacroAssembler> macro_assembler; |
| 816 | if (data->compilation_target == RegExpCompilationTarget::kNative) { |
| 817 | // Native regexp implementation. |
| 818 | DCHECK(!FLAG_jitless); |
| 819 | |
| 820 | NativeRegExpMacroAssembler::Mode mode = |
| 821 | is_one_byte ? NativeRegExpMacroAssembler::LATIN1 |
| 822 | : NativeRegExpMacroAssembler::UC16; |
| 823 | |
| 824 | const int output_register_count = |
| 825 | JSRegExp::RegistersForCaptureCount(data->capture_count); |
| 826 | #if V8_TARGET_ARCH_IA32 |
| 827 | macro_assembler.reset(new RegExpMacroAssemblerIA32(isolate, zone, mode, |
| 828 | output_register_count)); |
| 829 | #elif V8_TARGET_ARCH_X64 |
| 830 | macro_assembler.reset(new RegExpMacroAssemblerX64(isolate, zone, mode, |
| 831 | output_register_count)); |
| 832 | #elif V8_TARGET_ARCH_ARM |
| 833 | macro_assembler.reset(new RegExpMacroAssemblerARM(isolate, zone, mode, |
| 834 | output_register_count)); |
| 835 | #elif V8_TARGET_ARCH_ARM64 |
| 836 | macro_assembler.reset(new RegExpMacroAssemblerARM64(isolate, zone, mode, |
| 837 | output_register_count)); |
| 838 | #elif V8_TARGET_ARCH_S390 |
| 839 | macro_assembler.reset(new RegExpMacroAssemblerS390(isolate, zone, mode, |
| 840 | output_register_count)); |
| 841 | #elif V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64 |
| 842 | macro_assembler.reset(new RegExpMacroAssemblerPPC(isolate, zone, mode, |
| 843 | output_register_count)); |
| 844 | #elif V8_TARGET_ARCH_MIPS |
| 845 | macro_assembler.reset(new RegExpMacroAssemblerMIPS(isolate, zone, mode, |
| 846 | output_register_count)); |
| 847 | #elif V8_TARGET_ARCH_MIPS64 |
| 848 | macro_assembler.reset(new RegExpMacroAssemblerMIPS(isolate, zone, mode, |
| 849 | output_register_count)); |
| 850 | #else |
| 851 | #error "Unsupported architecture" |
| 852 | #endif |
| 853 | } else { |
| 854 | DCHECK_EQ(data->compilation_target, RegExpCompilationTarget::kBytecode); |
| 855 | // Interpreted regexp implementation. |
| 856 | macro_assembler.reset(new RegExpBytecodeGenerator(isolate, zone)); |
| 857 | } |
| 858 | |
| 859 | macro_assembler->set_slow_safe(TooMuchRegExpCode(isolate, pattern)); |
| 860 | if (FLAG_enable_experimental_regexp_engine_on_excessive_backtracks && |
| 861 | ExperimentalRegExp::CanBeHandled(data->tree, flags, |
| 862 | data->capture_count)) { |
| 863 | if (backtrack_limit == JSRegExp::kNoBacktrackLimit) { |
| 864 | backtrack_limit = FLAG_regexp_backtracks_before_fallback; |
| 865 | } else { |
| 866 | backtrack_limit = |
| 867 | std::min(backtrack_limit, FLAG_regexp_backtracks_before_fallback); |
| 868 | } |
| 869 | macro_assembler->set_backtrack_limit(backtrack_limit); |
| 870 | macro_assembler->set_can_fallback(true); |
| 871 | } else { |
| 872 | macro_assembler->set_backtrack_limit(backtrack_limit); |
| 873 | macro_assembler->set_can_fallback(false); |
| 874 | } |
| 875 | |
| 876 | // Inserted here, instead of in Assembler, because it depends on information |
| 877 | // in the AST that isn't replicated in the Node structure. |
| 878 | bool is_end_anchored = data->tree->IsAnchoredAtEnd(); |
| 879 | bool is_start_anchored = data->tree->IsAnchoredAtStart(); |
| 880 | int max_length = data->tree->max_match(); |
| 881 | static const int kMaxBacksearchLimit = 1024; |
| 882 | if (is_end_anchored && !is_start_anchored && !IsSticky(flags) && |
| 883 | max_length < kMaxBacksearchLimit) { |
| 884 | macro_assembler->SetCurrentPositionFromEnd(max_length); |
| 885 | } |
| 886 | |
| 887 | if (IsGlobal(flags)) { |
| 888 | RegExpMacroAssembler::GlobalMode mode = RegExpMacroAssembler::GLOBAL; |
| 889 | if (data->tree->min_match() > 0) { |
| 890 | mode = RegExpMacroAssembler::GLOBAL_NO_ZERO_LENGTH_CHECK; |
| 891 | } else if (IsUnicode(flags)) { |
| 892 | mode = RegExpMacroAssembler::GLOBAL_UNICODE; |
| 893 | } |
| 894 | macro_assembler->set_global_mode(mode); |
| 895 | } |
| 896 | |
| 897 | RegExpMacroAssembler* macro_assembler_ptr = macro_assembler.get(); |
| 898 | #ifdef DEBUG |
| 899 | std::unique_ptr<RegExpMacroAssembler> tracer_macro_assembler; |
| 900 | if (FLAG_trace_regexp_assembler) { |
| 901 | tracer_macro_assembler.reset( |
| 902 | new RegExpMacroAssemblerTracer(isolate, macro_assembler_ptr)); |
| 903 | macro_assembler_ptr = tracer_macro_assembler.get(); |
| 904 | } |
| 905 | #endif |
| 906 | |
| 907 | RegExpCompiler::CompilationResult result = compiler.Assemble( |
| 908 | isolate, macro_assembler_ptr, data->node, data->capture_count, pattern); |
| 909 | |
| 910 | // Code / bytecode printing. |
| 911 | { |
| 912 | #ifdef ENABLE_DISASSEMBLER |
| 913 | if (FLAG_print_regexp_code && |
| 914 | data->compilation_target == RegExpCompilationTarget::kNative) { |
| 915 | CodeTracer::Scope trace_scope(isolate->GetCodeTracer()); |
| 916 | OFStream os(trace_scope.file()); |
| 917 | Handle<Code> c = Handle<Code>::cast(result.code); |
| 918 | auto pattern_cstring = pattern->ToCString(); |
| 919 | c->Disassemble(pattern_cstring.get(), os, isolate); |
| 920 | } |
| 921 | #endif |
| 922 | if (FLAG_print_regexp_bytecode && |
| 923 | data->compilation_target == RegExpCompilationTarget::kBytecode) { |
| 924 | Handle<ByteArray> bytecode = Handle<ByteArray>::cast(result.code); |
| 925 | auto pattern_cstring = pattern->ToCString(); |
| 926 | RegExpBytecodeDisassemble(bytecode->GetDataStartAddress(), |
| 927 | bytecode->length(), pattern_cstring.get()); |
| 928 | } |
| 929 | } |
| 930 | |
| 931 | if (result.error != RegExpError::kNone) { |
| 932 | if (FLAG_correctness_fuzzer_suppressions && |
| 933 | result.error == RegExpError::kStackOverflow) { |
| 934 | FATAL("Aborting on stack overflow"); |
| 935 | } |
| 936 | data->error = result.error; |
| 937 | } |
| 938 | |
| 939 | data->code = result.code; |
| 940 | data->register_count = result.num_registers; |
| 941 | |
| 942 | return result.Succeeded(); |
| 943 | } |
| 944 | |
| 945 | RegExpGlobalCache::RegExpGlobalCache(Handle<JSRegExp> regexp, |
| 946 | Handle<String> subject, Isolate* isolate) |
| 947 | : register_array_(nullptr), |
| 948 | register_array_size_(0), |
| 949 | regexp_(regexp), |
| 950 | subject_(subject), |
| 951 | isolate_(isolate) { |
| 952 | DCHECK(IsGlobal(regexp->GetFlags())); |
| 953 | |
| 954 | switch (regexp_->TypeTag()) { |
| 955 | case JSRegExp::NOT_COMPILED: |
| 956 | UNREACHABLE(); |
| 957 | case JSRegExp::ATOM: { |
| 958 | // ATOM regexps do not have a global loop, so we search for one match at |
| 959 | // a time. |
| 960 | static const int kAtomRegistersPerMatch = 2; |
| 961 | registers_per_match_ = kAtomRegistersPerMatch; |
| 962 | register_array_size_ = registers_per_match_; |
| 963 | break; |
| 964 | } |
| 965 | case JSRegExp::IRREGEXP: { |
| 966 | registers_per_match_ = |
| 967 | RegExpImpl::IrregexpPrepare(isolate_, regexp_, subject_); |
| 968 | if (registers_per_match_ < 0) { |
| 969 | num_matches_ = -1; // Signal exception. |
| 970 | return; |
| 971 | } |
| 972 | if (regexp->ShouldProduceBytecode()) { |
| 973 | // Global loop in interpreted regexp is not implemented. We choose the |
| 974 | // size of the offsets vector so that it can only store one match. |
| 975 | register_array_size_ = registers_per_match_; |
| 976 | max_matches_ = 1; |
| 977 | } else { |
| 978 | register_array_size_ = Max(registers_per_match_, |
| 979 | Isolate::kJSRegexpStaticOffsetsVectorSize); |
| 980 | } |
| 981 | break; |
| 982 | } |
| 983 | case JSRegExp::EXPERIMENTAL: { |
| 984 | if (!ExperimentalRegExp::IsCompiled(regexp, isolate_) && |
| 985 | !ExperimentalRegExp::Compile(isolate_, regexp)) { |
| 986 | DCHECK(isolate->has_pending_exception()); |
| 987 | num_matches_ = -1; // Signal exception. |
| 988 | return; |
| 989 | } |
| 990 | registers_per_match_ = |
| 991 | JSRegExp::RegistersForCaptureCount(regexp->CaptureCount()); |
| 992 | register_array_size_ = |
| 993 | Max(registers_per_match_, Isolate::kJSRegexpStaticOffsetsVectorSize); |
| 994 | break; |
| 995 | } |
| 996 | } |
| 997 | |
| 998 | max_matches_ = register_array_size_ / registers_per_match_; |
| 999 | |
| 1000 | if (register_array_size_ > Isolate::kJSRegexpStaticOffsetsVectorSize) { |
| 1001 | register_array_ = NewArray<int32_t>(register_array_size_); |
| 1002 | } else { |
| 1003 | register_array_ = isolate->jsregexp_static_offsets_vector(); |
| 1004 | } |
| 1005 | |
| 1006 | // Set state so that fetching the results the first time triggers a call |
| 1007 | // to the compiled regexp. |
| 1008 | current_match_index_ = max_matches_ - 1; |
| 1009 | num_matches_ = max_matches_; |
| 1010 | DCHECK_LE(2, registers_per_match_); // Each match has at least one capture. |
| 1011 | DCHECK_GE(register_array_size_, registers_per_match_); |
| 1012 | int32_t* last_match = |
| 1013 | ®ister_array_[current_match_index_ * registers_per_match_]; |
| 1014 | last_match[0] = -1; |
| 1015 | last_match[1] = 0; |
| 1016 | } |
| 1017 | |
| 1018 | RegExpGlobalCache::~RegExpGlobalCache() { |
| 1019 | // Deallocate the register array if we allocated it in the constructor |
| 1020 | // (as opposed to using the existing jsregexp_static_offsets_vector). |
| 1021 | if (register_array_size_ > Isolate::kJSRegexpStaticOffsetsVectorSize) { |
| 1022 | DeleteArray(register_array_); |
| 1023 | } |
| 1024 | } |
| 1025 | |
| 1026 | int RegExpGlobalCache::AdvanceZeroLength(int last_index) { |
| 1027 | if (IsUnicode(regexp_->GetFlags()) && last_index + 1 < subject_->length() && |
| 1028 | unibrow::Utf16::IsLeadSurrogate(subject_->Get(last_index)) && |
| 1029 | unibrow::Utf16::IsTrailSurrogate(subject_->Get(last_index + 1))) { |
| 1030 | // Advance over the surrogate pair. |
| 1031 | return last_index + 2; |
| 1032 | } |
| 1033 | return last_index + 1; |
| 1034 | } |
| 1035 | |
| 1036 | int32_t* RegExpGlobalCache::FetchNext() { |
| 1037 | current_match_index_++; |
| 1038 | |
| 1039 | if (current_match_index_ >= num_matches_) { |
| 1040 | // Current batch of results exhausted. |
| 1041 | // Fail if last batch was not even fully filled. |
| 1042 | if (num_matches_ < max_matches_) { |
| 1043 | num_matches_ = 0; // Signal failed match. |
| 1044 | return nullptr; |
| 1045 | } |
| 1046 | |
| 1047 | int32_t* last_match = |
| 1048 | ®ister_array_[(current_match_index_ - 1) * registers_per_match_]; |
| 1049 | int last_end_index = last_match[1]; |
| 1050 | |
| 1051 | switch (regexp_->TypeTag()) { |
| 1052 | case JSRegExp::NOT_COMPILED: |
| 1053 | UNREACHABLE(); |
| 1054 | case JSRegExp::ATOM: |
| 1055 | num_matches_ = |
| 1056 | RegExpImpl::AtomExecRaw(isolate_, regexp_, subject_, last_end_index, |
| 1057 | register_array_, register_array_size_); |
| 1058 | break; |
| 1059 | case JSRegExp::EXPERIMENTAL: { |
| 1060 | DCHECK(ExperimentalRegExp::IsCompiled(regexp_, isolate_)); |
| 1061 | DisallowHeapAllocation no_gc; |
| 1062 | num_matches_ = ExperimentalRegExp::ExecRaw( |
| 1063 | isolate_, RegExp::kFromRuntime, *regexp_, *subject_, |
| 1064 | register_array_, register_array_size_, last_end_index); |
| 1065 | break; |
| 1066 | } |
| 1067 | case JSRegExp::IRREGEXP: { |
| 1068 | int last_start_index = last_match[0]; |
| 1069 | if (last_start_index == last_end_index) { |
| 1070 | // Zero-length match. Advance by one code point. |
| 1071 | last_end_index = AdvanceZeroLength(last_end_index); |
| 1072 | } |
| 1073 | if (last_end_index > subject_->length()) { |
| 1074 | num_matches_ = 0; // Signal failed match. |
| 1075 | return nullptr; |
| 1076 | } |
| 1077 | num_matches_ = RegExpImpl::IrregexpExecRaw( |
| 1078 | isolate_, regexp_, subject_, last_end_index, register_array_, |
| 1079 | register_array_size_); |
| 1080 | break; |
| 1081 | } |
| 1082 | } |
| 1083 | |
| 1084 | // Fall back to experimental engine if needed and possible. |
| 1085 | if (num_matches_ == RegExp::kInternalRegExpFallbackToExperimental) { |
| 1086 | num_matches_ = ExperimentalRegExp::OneshotExecRaw( |
| 1087 | isolate_, regexp_, subject_, register_array_, register_array_size_, |
| 1088 | last_end_index); |
| 1089 | } |
| 1090 | |
| 1091 | if (num_matches_ <= 0) { |
| 1092 | return nullptr; |
| 1093 | } |
| 1094 | current_match_index_ = 0; |
| 1095 | return register_array_; |
| 1096 | } else { |
| 1097 | return ®ister_array_[current_match_index_ * registers_per_match_]; |
| 1098 | } |
| 1099 | } |
| 1100 | |
| 1101 | int32_t* RegExpGlobalCache::LastSuccessfulMatch() { |
| 1102 | int index = current_match_index_ * registers_per_match_; |
| 1103 | if (num_matches_ == 0) { |
| 1104 | // After a failed match we shift back by one result. |
| 1105 | index -= registers_per_match_; |
| 1106 | } |
| 1107 | return ®ister_array_[index]; |
| 1108 | } |
| 1109 | |
| 1110 | Object RegExpResultsCache::Lookup(Heap* heap, String key_string, |
| 1111 | Object key_pattern, |
| 1112 | FixedArray* last_match_cache, |
| 1113 | ResultsCacheType type) { |
| 1114 | FixedArray cache; |
| 1115 | if (!key_string.IsInternalizedString()) return Smi::zero(); |
| 1116 | if (type == STRING_SPLIT_SUBSTRINGS) { |
| 1117 | DCHECK(key_pattern.IsString()); |
| 1118 | if (!key_pattern.IsInternalizedString()) return Smi::zero(); |
| 1119 | cache = heap->string_split_cache(); |
| 1120 | } else { |
| 1121 | DCHECK(type == REGEXP_MULTIPLE_INDICES); |
| 1122 | DCHECK(key_pattern.IsFixedArray()); |
| 1123 | cache = heap->regexp_multiple_cache(); |
| 1124 | } |
| 1125 | |
| 1126 | uint32_t hash = key_string.Hash(); |
| 1127 | uint32_t index = ((hash & (kRegExpResultsCacheSize - 1)) & |
| 1128 | ~(kArrayEntriesPerCacheEntry - 1)); |
| 1129 | if (cache.get(index + kStringOffset) != key_string || |
| 1130 | cache.get(index + kPatternOffset) != key_pattern) { |
| 1131 | index = |
| 1132 | ((index + kArrayEntriesPerCacheEntry) & (kRegExpResultsCacheSize - 1)); |
| 1133 | if (cache.get(index + kStringOffset) != key_string || |
| 1134 | cache.get(index + kPatternOffset) != key_pattern) { |
| 1135 | return Smi::zero(); |
| 1136 | } |
| 1137 | } |
| 1138 | |
| 1139 | *last_match_cache = FixedArray::cast(cache.get(index + kLastMatchOffset)); |
| 1140 | return cache.get(index + kArrayOffset); |
| 1141 | } |
| 1142 | |
| 1143 | void RegExpResultsCache::Enter(Isolate* isolate, Handle<String> key_string, |
| 1144 | Handle<Object> key_pattern, |
| 1145 | Handle<FixedArray> value_array, |
| 1146 | Handle<FixedArray> last_match_cache, |
| 1147 | ResultsCacheType type) { |
| 1148 | Factory* factory = isolate->factory(); |
| 1149 | Handle<FixedArray> cache; |
| 1150 | if (!key_string->IsInternalizedString()) return; |
| 1151 | if (type == STRING_SPLIT_SUBSTRINGS) { |
| 1152 | DCHECK(key_pattern->IsString()); |
| 1153 | if (!key_pattern->IsInternalizedString()) return; |
| 1154 | cache = factory->string_split_cache(); |
| 1155 | } else { |
| 1156 | DCHECK(type == REGEXP_MULTIPLE_INDICES); |
| 1157 | DCHECK(key_pattern->IsFixedArray()); |
| 1158 | cache = factory->regexp_multiple_cache(); |
| 1159 | } |
| 1160 | |
| 1161 | uint32_t hash = key_string->Hash(); |
| 1162 | uint32_t index = ((hash & (kRegExpResultsCacheSize - 1)) & |
| 1163 | ~(kArrayEntriesPerCacheEntry - 1)); |
| 1164 | if (cache->get(index + kStringOffset) == Smi::zero()) { |
| 1165 | cache->set(index + kStringOffset, *key_string); |
| 1166 | cache->set(index + kPatternOffset, *key_pattern); |
| 1167 | cache->set(index + kArrayOffset, *value_array); |
| 1168 | cache->set(index + kLastMatchOffset, *last_match_cache); |
| 1169 | } else { |
| 1170 | uint32_t index2 = |
| 1171 | ((index + kArrayEntriesPerCacheEntry) & (kRegExpResultsCacheSize - 1)); |
| 1172 | if (cache->get(index2 + kStringOffset) == Smi::zero()) { |
| 1173 | cache->set(index2 + kStringOffset, *key_string); |
| 1174 | cache->set(index2 + kPatternOffset, *key_pattern); |
| 1175 | cache->set(index2 + kArrayOffset, *value_array); |
| 1176 | cache->set(index2 + kLastMatchOffset, *last_match_cache); |
| 1177 | } else { |
| 1178 | cache->set(index2 + kStringOffset, Smi::zero()); |
| 1179 | cache->set(index2 + kPatternOffset, Smi::zero()); |
| 1180 | cache->set(index2 + kArrayOffset, Smi::zero()); |
| 1181 | cache->set(index2 + kLastMatchOffset, Smi::zero()); |
| 1182 | cache->set(index + kStringOffset, *key_string); |
| 1183 | cache->set(index + kPatternOffset, *key_pattern); |
| 1184 | cache->set(index + kArrayOffset, *value_array); |
| 1185 | cache->set(index + kLastMatchOffset, *last_match_cache); |
| 1186 | } |
| 1187 | } |
| 1188 | // If the array is a reasonably short list of substrings, convert it into a |
| 1189 | // list of internalized strings. |
| 1190 | if (type == STRING_SPLIT_SUBSTRINGS && value_array->length() < 100) { |
| 1191 | for (int i = 0; i < value_array->length(); i++) { |
| 1192 | Handle<String> str(String::cast(value_array->get(i)), isolate); |
| 1193 | Handle<String> internalized_str = factory->InternalizeString(str); |
| 1194 | value_array->set(i, *internalized_str); |
| 1195 | } |
| 1196 | } |
| 1197 | // Convert backing store to a copy-on-write array. |
| 1198 | value_array->set_map_no_write_barrier( |
| 1199 | ReadOnlyRoots(isolate).fixed_cow_array_map()); |
| 1200 | } |
| 1201 | |
| 1202 | void RegExpResultsCache::Clear(FixedArray cache) { |
| 1203 | for (int i = 0; i < kRegExpResultsCacheSize; i++) { |
| 1204 | cache.set(i, Smi::zero()); |
| 1205 | } |
| 1206 | } |
| 1207 | |
| 1208 | } // namespace internal |
| 1209 | } // namespace v8 |