blob: ddcd2e831f03bdeb98b69c3a1bc33593f2f11889 [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "content/common/discardable_shared_memory_heap.h"
#include "base/memory/discardable_shared_memory.h"
namespace content {
namespace {
bool IsPowerOfTwo(size_t x) {
return (x & (x - 1)) == 0;
}
bool IsInFreeList(DiscardableSharedMemoryHeap::Span* span) {
return span->previous() || span->next();
}
} // namespace
DiscardableSharedMemoryHeap::Span::Span(
base::DiscardableSharedMemory* shared_memory,
size_t start,
size_t length)
: shared_memory_(shared_memory), start_(start), length_(length) {
}
DiscardableSharedMemoryHeap::Span::~Span() {
}
DiscardableSharedMemoryHeap::ScopedMemorySegment::ScopedMemorySegment(
DiscardableSharedMemoryHeap* heap,
scoped_ptr<base::DiscardableSharedMemory> shared_memory,
size_t size)
: heap_(heap), shared_memory_(shared_memory.Pass()), size_(size) {
}
DiscardableSharedMemoryHeap::ScopedMemorySegment::~ScopedMemorySegment() {
heap_->ReleaseMemory(shared_memory_.get(), size_);
// Purge memory. This has no effect if already purged.
shared_memory_->Purge(base::Time::Now());
}
bool DiscardableSharedMemoryHeap::ScopedMemorySegment::IsUsed() const {
return heap_->IsMemoryUsed(shared_memory_.get(), size_);
}
bool DiscardableSharedMemoryHeap::ScopedMemorySegment::IsResident() const {
return heap_->IsMemoryResident(shared_memory_.get());
}
DiscardableSharedMemoryHeap::DiscardableSharedMemoryHeap(size_t block_size)
: block_size_(block_size), num_blocks_(0), num_free_blocks_(0) {
DCHECK_NE(block_size_, 0u);
DCHECK(IsPowerOfTwo(block_size_));
}
DiscardableSharedMemoryHeap::~DiscardableSharedMemoryHeap() {
memory_segments_.clear();
DCHECK_EQ(num_blocks_, 0u);
DCHECK_EQ(num_free_blocks_, 0u);
DCHECK(free_spans_.empty());
}
scoped_ptr<DiscardableSharedMemoryHeap::Span> DiscardableSharedMemoryHeap::Grow(
scoped_ptr<base::DiscardableSharedMemory> shared_memory,
size_t size) {
// Memory must be aligned to block size.
DCHECK_EQ(
reinterpret_cast<size_t>(shared_memory->memory()) & (block_size_ - 1),
0u);
DCHECK_EQ(size & (block_size_ - 1), 0u);
scoped_ptr<Span> span(
new Span(shared_memory.get(),
reinterpret_cast<size_t>(shared_memory->memory()) / block_size_,
size / block_size_));
DCHECK(spans_.find(span->start_) == spans_.end());
DCHECK(spans_.find(span->start_ + span->length_ - 1) == spans_.end());
RegisterSpan(span.get());
num_blocks_ += span->length_;
// Start tracking if segment is resident by adding it to |memory_segments_|.
memory_segments_.push_back(
new ScopedMemorySegment(this, shared_memory.Pass(), size));
return span.Pass();
}
void DiscardableSharedMemoryHeap::MergeIntoFreeList(scoped_ptr<Span> span) {
DCHECK(span->shared_memory_);
// First add length of |span| to |num_free_blocks_|.
num_free_blocks_ += span->length_;
// Merge with previous span if possible.
SpanMap::iterator prev_it = spans_.find(span->start_ - 1);
if (prev_it != spans_.end() && IsInFreeList(prev_it->second)) {
scoped_ptr<Span> prev = RemoveFromFreeList(prev_it->second);
DCHECK_EQ(prev->start_ + prev->length_, span->start_);
UnregisterSpan(prev.get());
if (span->length_ > 1)
spans_.erase(span->start_);
span->start_ -= prev->length_;
span->length_ += prev->length_;
spans_[span->start_] = span.get();
}
// Merge with next span if possible.
SpanMap::iterator next_it = spans_.find(span->start_ + span->length_);
if (next_it != spans_.end() && IsInFreeList(next_it->second)) {
scoped_ptr<Span> next = RemoveFromFreeList(next_it->second);
DCHECK_EQ(next->start_, span->start_ + span->length_);
UnregisterSpan(next.get());
if (span->length_ > 1)
spans_.erase(span->start_ + span->length_ - 1);
span->length_ += next->length_;
spans_[span->start_ + span->length_ - 1] = span.get();
}
free_spans_.Append(span.release());
}
scoped_ptr<DiscardableSharedMemoryHeap::Span>
DiscardableSharedMemoryHeap::Split(Span* span, size_t blocks) {
DCHECK(blocks);
DCHECK_LT(blocks, span->length_);
scoped_ptr<Span> leftover(new Span(
span->shared_memory_, span->start_ + blocks, span->length_ - blocks));
DCHECK_IMPLIES(leftover->length_ > 1,
spans_.find(leftover->start_) == spans_.end());
RegisterSpan(leftover.get());
spans_[span->start_ + blocks - 1] = span;
span->length_ = blocks;
return leftover.Pass();
}
scoped_ptr<DiscardableSharedMemoryHeap::Span>
DiscardableSharedMemoryHeap::SearchFreeList(size_t blocks, size_t slack) {
DCHECK(blocks);
// Search through list to find best span.
Span* best = nullptr;
// This implements address-ordered best-fit.
for (Span* span = free_spans_.head()->value(); span != free_spans_.end();
span = span->next()->value()) {
// Skip span if it's not large enough.
if (span->length_ < blocks)
continue;
// Skip span if it's too large.
if (span->length_ - blocks > slack)
continue;
if (best) {
// Skip span if |best| is a better fit.
if (span->length_ > best->length_)
continue;
// Skip span if |best| starts at a lower address.
if ((span->length_ == best->length_) && (span->start_ > best->start_))
continue;
}
best = span;
}
return best ? Carve(best, blocks) : nullptr;
}
void DiscardableSharedMemoryHeap::ReleaseFreeMemory() {
// Erase all free segments after rearranging the segments in such a way
// that used segments precede all free segments.
memory_segments_.erase(
std::partition(
memory_segments_.begin(), memory_segments_.end(),
[](const ScopedMemorySegment* segment) { return segment->IsUsed(); }),
memory_segments_.end());
}
void DiscardableSharedMemoryHeap::ReleasePurgedMemory() {
// Erase all purged segments after rearranging the segments in such a way
// that resident segments precede all purged segments.
memory_segments_.erase(
std::partition(memory_segments_.begin(), memory_segments_.end(),
[](const ScopedMemorySegment* segment) {
return segment->IsResident();
}),
memory_segments_.end());
}
size_t DiscardableSharedMemoryHeap::GetSize() const {
return num_blocks_ * block_size_;
}
size_t DiscardableSharedMemoryHeap::GetFreeListSize() const {
return num_free_blocks_ * block_size_;
}
scoped_ptr<DiscardableSharedMemoryHeap::Span>
DiscardableSharedMemoryHeap::RemoveFromFreeList(Span* span) {
span->RemoveFromList();
return make_scoped_ptr(span);
}
scoped_ptr<DiscardableSharedMemoryHeap::Span>
DiscardableSharedMemoryHeap::Carve(Span* span, size_t blocks) {
scoped_ptr<Span> serving = RemoveFromFreeList(span);
const int extra = serving->length_ - blocks;
if (extra) {
scoped_ptr<Span> leftover(
new Span(serving->shared_memory_, serving->start_ + blocks, extra));
DCHECK_IMPLIES(extra > 1, spans_.find(leftover->start_) == spans_.end());
RegisterSpan(leftover.get());
// No need to coalesce as the previous span of |leftover| was just split
// and the next span of |leftover| was not previously coalesced with
// |span|.
free_spans_.Append(leftover.release());
serving->length_ = blocks;
spans_[serving->start_ + blocks - 1] = serving.get();
}
// |serving| is no longer in the free list, remove its length from
// |num_free_blocks_|.
DCHECK_GE(num_free_blocks_, serving->length_);
num_free_blocks_ -= serving->length_;
return serving.Pass();
}
void DiscardableSharedMemoryHeap::RegisterSpan(Span* span) {
spans_[span->start_] = span;
if (span->length_ > 1)
spans_[span->start_ + span->length_ - 1] = span;
}
void DiscardableSharedMemoryHeap::UnregisterSpan(Span* span) {
DCHECK(spans_.find(span->start_) != spans_.end());
DCHECK_EQ(spans_[span->start_], span);
spans_.erase(span->start_);
if (span->length_ > 1) {
DCHECK(spans_.find(span->start_ + span->length_ - 1) != spans_.end());
DCHECK_EQ(spans_[span->start_ + span->length_ - 1], span);
spans_.erase(span->start_ + span->length_ - 1);
}
}
bool DiscardableSharedMemoryHeap::IsMemoryUsed(
const base::DiscardableSharedMemory* shared_memory,
size_t size) {
size_t offset =
reinterpret_cast<size_t>(shared_memory->memory()) / block_size_;
size_t length = size / block_size_;
DCHECK(spans_.find(offset) != spans_.end());
Span* span = spans_[offset];
DCHECK_LE(span->length_, length);
// Memory is used if first span is not in free list or shorter than segment.
return !IsInFreeList(span) || span->length_ != length;
}
bool DiscardableSharedMemoryHeap::IsMemoryResident(
const base::DiscardableSharedMemory* shared_memory) {
return shared_memory->IsMemoryResident();
}
void DiscardableSharedMemoryHeap::ReleaseMemory(
const base::DiscardableSharedMemory* shared_memory,
size_t size) {
size_t offset =
reinterpret_cast<size_t>(shared_memory->memory()) / block_size_;
size_t end = offset + size / block_size_;
while (offset < end) {
DCHECK(spans_.find(offset) != spans_.end());
Span* span = spans_[offset];
DCHECK_EQ(span->shared_memory_, shared_memory);
span->shared_memory_ = nullptr;
UnregisterSpan(span);
offset += span->length_;
DCHECK_GE(num_blocks_, span->length_);
num_blocks_ -= span->length_;
// If |span| is in the free list, remove it and update |num_free_blocks_|.
if (IsInFreeList(span)) {
DCHECK_GE(num_free_blocks_, span->length_);
num_free_blocks_ -= span->length_;
RemoveFromFreeList(span);
}
}
}
} // namespace content