| // Copyright (c) 2009 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "app/gfx/skbitmap_operations.h" |
| |
| #include "testing/gtest/include/gtest/gtest.h" |
| #include "third_party/skia/include/core/SkBitmap.h" |
| #include "third_party/skia/include/core/SkColorPriv.h" |
| #include "third_party/skia/include/core/SkUnPreMultiply.h" |
| |
| namespace { |
| |
| // Returns true if each channel of the given two colors are "close." This is |
| // used for comparing colors where rounding errors may cause off-by-one. |
| bool ColorsClose(uint32_t a, uint32_t b) { |
| return abs(static_cast<int>(SkColorGetB(a) - SkColorGetB(b))) < 2 && |
| abs(static_cast<int>(SkColorGetG(a) - SkColorGetG(b))) < 2 && |
| abs(static_cast<int>(SkColorGetR(a) - SkColorGetR(b))) < 2 && |
| abs(static_cast<int>(SkColorGetA(a) - SkColorGetA(b))) < 2; |
| } |
| |
| void FillDataToBitmap(int w, int h, SkBitmap* bmp) { |
| bmp->setConfig(SkBitmap::kARGB_8888_Config, w, h); |
| bmp->allocPixels(); |
| |
| unsigned char* src_data = |
| reinterpret_cast<unsigned char*>(bmp->getAddr32(0, 0)); |
| for (int i = 0; i < w * h; i++) { |
| src_data[i * 4 + 0] = static_cast<unsigned char>(i % 255); |
| src_data[i * 4 + 1] = static_cast<unsigned char>(i % 255); |
| src_data[i * 4 + 2] = static_cast<unsigned char>(i % 255); |
| src_data[i * 4 + 3] = static_cast<unsigned char>(i % 255); |
| } |
| } |
| |
| } // namespace |
| |
| // Blend two bitmaps together at 50% alpha and verify that the result |
| // is the middle-blend of the two. |
| TEST(SkBitmapOperationsTest, CreateBlendedBitmap) { |
| int src_w = 16, src_h = 16; |
| SkBitmap src_a; |
| src_a.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h); |
| src_a.allocPixels(); |
| |
| SkBitmap src_b; |
| src_b.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h); |
| src_b.allocPixels(); |
| |
| for (int y = 0, i = 0; y < src_h; y++) { |
| for (int x = 0; x < src_w; x++) { |
| *src_a.getAddr32(x, y) = SkColorSetARGB(255, 0, i * 2 % 255, i % 255); |
| *src_b.getAddr32(x, y) = |
| SkColorSetARGB((255 - i) % 255, i % 255, i * 4 % 255, 0); |
| i++; |
| } |
| } |
| |
| // Shift to red. |
| SkBitmap blended = SkBitmapOperations::CreateBlendedBitmap( |
| src_a, src_b, 0.5); |
| SkAutoLockPixels srca_lock(src_a); |
| SkAutoLockPixels srcb_lock(src_b); |
| SkAutoLockPixels blended_lock(blended); |
| |
| for (int y = 0; y < src_h; y++) { |
| for (int x = 0; x < src_w; x++) { |
| int i = y * src_w + x; |
| EXPECT_EQ(static_cast<unsigned int>((255 + ((255 - i) % 255)) / 2), |
| SkColorGetA(*blended.getAddr32(x, y))); |
| EXPECT_EQ(static_cast<unsigned int>(i % 255 / 2), |
| SkColorGetR(*blended.getAddr32(x, y))); |
| EXPECT_EQ((static_cast<unsigned int>((i * 2) % 255 + (i * 4) % 255) / 2), |
| SkColorGetG(*blended.getAddr32(x, y))); |
| EXPECT_EQ(static_cast<unsigned int>(i % 255 / 2), |
| SkColorGetB(*blended.getAddr32(x, y))); |
| } |
| } |
| } |
| |
| // Test our masking functions. |
| TEST(SkBitmapOperationsTest, CreateMaskedBitmap) { |
| int src_w = 16, src_h = 16; |
| |
| SkBitmap src; |
| FillDataToBitmap(src_w, src_h, &src); |
| |
| // Generate alpha mask |
| SkBitmap alpha; |
| alpha.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h); |
| alpha.allocPixels(); |
| for (int y = 0, i = 0; y < src_h; y++) { |
| for (int x = 0; x < src_w; x++) { |
| *alpha.getAddr32(x, y) = SkColorSetARGB((i + 128) % 255, |
| (i + 128) % 255, |
| (i + 64) % 255, |
| (i + 0) % 255); |
| i++; |
| } |
| } |
| |
| SkBitmap masked = SkBitmapOperations::CreateMaskedBitmap(src, alpha); |
| |
| SkAutoLockPixels src_lock(src); |
| SkAutoLockPixels alpha_lock(alpha); |
| SkAutoLockPixels masked_lock(masked); |
| for (int y = 0; y < src_h; y++) { |
| for (int x = 0; x < src_w; x++) { |
| // Test that the alpha is equal. |
| SkColor src_pixel = SkUnPreMultiply::PMColorToColor(*src.getAddr32(x, y)); |
| SkColor alpha_pixel = |
| SkUnPreMultiply::PMColorToColor(*alpha.getAddr32(x, y)); |
| SkColor masked_pixel = *masked.getAddr32(x, y); |
| |
| int alpha_value = SkAlphaMul(SkColorGetA(src_pixel), |
| SkColorGetA(alpha_pixel)); |
| SkColor expected_pixel = SkColorSetARGB( |
| alpha_value, |
| SkAlphaMul(SkColorGetR(src_pixel), alpha_value), |
| SkAlphaMul(SkColorGetG(src_pixel), alpha_value), |
| SkAlphaMul(SkColorGetB(src_pixel), alpha_value)); |
| |
| EXPECT_TRUE(ColorsClose(expected_pixel, masked_pixel)); |
| } |
| } |
| } |
| |
| // Make sure that when shifting a bitmap without any shift parameters, |
| // the end result is close enough to the original (rounding errors |
| // notwithstanding). |
| TEST(SkBitmapOperationsTest, CreateHSLShiftedBitmapToSame) { |
| int src_w = 4, src_h = 4; |
| SkBitmap src; |
| src.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h); |
| src.allocPixels(); |
| |
| for (int y = 0, i = 0; y < src_h; y++) { |
| for (int x = 0; x < src_w; x++) { |
| *src.getAddr32(x, y) = SkColorSetARGB(i + 128 % 255, |
| i + 128 % 255, i + 64 % 255, i + 0 % 255); |
| i++; |
| } |
| } |
| |
| color_utils::HSL hsl = { -1, -1, -1 }; |
| |
| SkBitmap shifted = SkBitmapOperations::CreateHSLShiftedBitmap(src, hsl); |
| |
| SkAutoLockPixels src_lock(src); |
| SkAutoLockPixels shifted_lock(shifted); |
| |
| for (int y = 0; y < src_w; y++) { |
| for (int x = 0; x < src_h; x++) { |
| SkColor src_pixel = *src.getAddr32(x, y); |
| SkColor shifted_pixel = *shifted.getAddr32(x, y); |
| EXPECT_TRUE(ColorsClose(src_pixel, shifted_pixel)); |
| } |
| } |
| } |
| |
| // Shift a blue bitmap to red. |
| TEST(SkBitmapOperationsTest, CreateHSLShiftedBitmapHueOnly) { |
| int src_w = 16, src_h = 16; |
| SkBitmap src; |
| src.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h); |
| src.allocPixels(); |
| |
| for (int y = 0, i = 0; y < src_h; y++) { |
| for (int x = 0; x < src_w; x++) { |
| *src.getAddr32(x, y) = SkColorSetARGB(255, 0, 0, i % 255); |
| i++; |
| } |
| } |
| |
| // Shift to red. |
| color_utils::HSL hsl = { 0, -1, -1 }; |
| |
| SkBitmap shifted = SkBitmapOperations::CreateHSLShiftedBitmap(src, hsl); |
| |
| SkAutoLockPixels src_lock(src); |
| SkAutoLockPixels shifted_lock(shifted); |
| |
| for (int y = 0, i = 0; y < src_h; y++) { |
| for (int x = 0; x < src_w; x++) { |
| EXPECT_TRUE(ColorsClose(*shifted.getAddr32(x, y), |
| SkColorSetARGB(255, i % 255, 0, 0))); |
| i++; |
| } |
| } |
| } |
| |
| // Test our cropping. |
| TEST(SkBitmapOperationsTest, CreateCroppedBitmap) { |
| int src_w = 16, src_h = 16; |
| SkBitmap src; |
| FillDataToBitmap(src_w, src_h, &src); |
| |
| SkBitmap cropped = SkBitmapOperations::CreateTiledBitmap(src, 4, 4, |
| 8, 8); |
| ASSERT_EQ(8, cropped.width()); |
| ASSERT_EQ(8, cropped.height()); |
| |
| SkAutoLockPixels src_lock(src); |
| SkAutoLockPixels cropped_lock(cropped); |
| for (int y = 4; y < 12; y++) { |
| for (int x = 4; x < 12; x++) { |
| EXPECT_EQ(*src.getAddr32(x, y), |
| *cropped.getAddr32(x - 4, y - 4)); |
| } |
| } |
| } |
| |
| // Test whether our cropping correctly wraps across image boundaries. |
| TEST(SkBitmapOperationsTest, CreateCroppedBitmapWrapping) { |
| int src_w = 16, src_h = 16; |
| SkBitmap src; |
| FillDataToBitmap(src_w, src_h, &src); |
| |
| SkBitmap cropped = SkBitmapOperations::CreateTiledBitmap( |
| src, src_w / 2, src_h / 2, src_w, src_h); |
| ASSERT_EQ(src_w, cropped.width()); |
| ASSERT_EQ(src_h, cropped.height()); |
| |
| SkAutoLockPixels src_lock(src); |
| SkAutoLockPixels cropped_lock(cropped); |
| for (int y = 0; y < src_h; y++) { |
| for (int x = 0; x < src_w; x++) { |
| EXPECT_EQ(*src.getAddr32(x, y), |
| *cropped.getAddr32((x + src_w / 2) % src_w, |
| (y + src_h / 2) % src_h)); |
| } |
| } |
| } |
| |
| TEST(SkBitmapOperationsTest, DownsampleByTwo) { |
| // Use an odd-sized bitmap to make sure the edge cases where there isn't a |
| // 2x2 block of pixels is handled correctly. |
| // Here's the ARGB example |
| // |
| // 50% transparent green opaque 50% blue white |
| // 80008000 FF000080 FFFFFFFF |
| // |
| // 50% transparent red opaque 50% gray black |
| // 80800000 80808080 FF000000 |
| // |
| // black white 50% gray |
| // FF000000 FFFFFFFF FF808080 |
| // |
| // The result of this computation should be: |
| // A0404040 FF808080 |
| // FF808080 FF808080 |
| SkBitmap input; |
| input.setConfig(SkBitmap::kARGB_8888_Config, 3, 3); |
| input.allocPixels(); |
| |
| // The color order may be different, but we don't care (the channels are |
| // trated the same). |
| *input.getAddr32(0, 0) = 0x80008000; |
| *input.getAddr32(1, 0) = 0xFF000080; |
| *input.getAddr32(2, 0) = 0xFFFFFFFF; |
| *input.getAddr32(0, 1) = 0x80800000; |
| *input.getAddr32(1, 1) = 0x80808080; |
| *input.getAddr32(2, 1) = 0xFF000000; |
| *input.getAddr32(0, 2) = 0xFF000000; |
| *input.getAddr32(1, 2) = 0xFFFFFFFF; |
| *input.getAddr32(2, 2) = 0xFF808080; |
| |
| SkBitmap result = SkBitmapOperations::DownsampleByTwo(input); |
| EXPECT_EQ(2, result.width()); |
| EXPECT_EQ(2, result.height()); |
| |
| // Some of the values are off-by-one due to rounding. |
| SkAutoLockPixels lock(result); |
| EXPECT_EQ(0x9f404040, *result.getAddr32(0, 0)); |
| EXPECT_EQ(0xFF7f7f7f, *result.getAddr32(1, 0)); |
| EXPECT_EQ(0xFF7f7f7f, *result.getAddr32(0, 1)); |
| EXPECT_EQ(0xFF808080, *result.getAddr32(1, 1)); |
| } |
| |
| // Test edge cases for DownsampleByTwo. |
| TEST(SkBitmapOperationsTest, DownsampleByTwoSmall) { |
| SkPMColor reference = 0xFF4080FF; |
| |
| // Test a 1x1 bitmap. |
| SkBitmap one_by_one; |
| one_by_one.setConfig(SkBitmap::kARGB_8888_Config, 1, 1); |
| one_by_one.allocPixels(); |
| *one_by_one.getAddr32(0, 0) = reference; |
| SkBitmap result = SkBitmapOperations::DownsampleByTwo(one_by_one); |
| SkAutoLockPixels lock1(result); |
| EXPECT_EQ(1, result.width()); |
| EXPECT_EQ(1, result.height()); |
| EXPECT_EQ(reference, *result.getAddr32(0, 0)); |
| |
| // Test an n by 1 bitmap. |
| SkBitmap one_by_n; |
| one_by_n.setConfig(SkBitmap::kARGB_8888_Config, 300, 1); |
| one_by_n.allocPixels(); |
| result = SkBitmapOperations::DownsampleByTwo(one_by_n); |
| SkAutoLockPixels lock2(result); |
| EXPECT_EQ(300, result.width()); |
| EXPECT_EQ(1, result.height()); |
| |
| // Test a 1 by n bitmap. |
| SkBitmap n_by_one; |
| n_by_one.setConfig(SkBitmap::kARGB_8888_Config, 1, 300); |
| n_by_one.allocPixels(); |
| result = SkBitmapOperations::DownsampleByTwo(n_by_one); |
| SkAutoLockPixels lock3(result); |
| EXPECT_EQ(1, result.width()); |
| EXPECT_EQ(300, result.height()); |
| |
| // Test an empty bitmap |
| SkBitmap empty; |
| result = SkBitmapOperations::DownsampleByTwo(empty); |
| EXPECT_TRUE(result.isNull()); |
| EXPECT_EQ(0, result.width()); |
| EXPECT_EQ(0, result.height()); |
| } |
| |
| // Here we assume DownsampleByTwo works correctly (it's tested above) and |
| // just make sure that the wrapper function does the right thing. |
| TEST(SkBitmapOperationsTest, DownsampleByTwoUntilSize) { |
| // First make sure a "too small" bitmap doesn't get modified at all. |
| SkBitmap too_small; |
| too_small.setConfig(SkBitmap::kARGB_8888_Config, 10, 10); |
| too_small.allocPixels(); |
| SkBitmap result = SkBitmapOperations::DownsampleByTwoUntilSize( |
| too_small, 16, 16); |
| EXPECT_EQ(10, result.width()); |
| EXPECT_EQ(10, result.height()); |
| |
| // Now make sure giving it a 0x0 target returns something reasonable. |
| result = SkBitmapOperations::DownsampleByTwoUntilSize(too_small, 0, 0); |
| EXPECT_EQ(1, result.width()); |
| EXPECT_EQ(1, result.height()); |
| |
| // Test multiple steps of downsampling. |
| SkBitmap large; |
| large.setConfig(SkBitmap::kARGB_8888_Config, 100, 43); |
| large.allocPixels(); |
| result = SkBitmapOperations::DownsampleByTwoUntilSize(large, 6, 6); |
| |
| // The result should be divided in half 100x43 -> 50x22 -> 25x11 |
| EXPECT_EQ(25, result.width()); |
| EXPECT_EQ(11, result.height()); |
| } |