blob: 6ec4e5e8aae73f2564690eb7effd83b1f0c3c363 [file] [log] [blame]
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/crypto/crypto_utils.h"
#include <memory>
#include "crypto/hkdf.h"
#include "crypto/secure_hash.h"
#include "net/base/url_util.h"
#include "net/quic/crypto/crypto_handshake.h"
#include "net/quic/crypto/crypto_protocol.h"
#include "net/quic/crypto/quic_decrypter.h"
#include "net/quic/crypto/quic_encrypter.h"
#include "net/quic/crypto/quic_random.h"
#include "net/quic/quic_bug_tracker.h"
#include "net/quic/quic_time.h"
#include "net/quic/quic_utils.h"
#include "url/url_canon.h"
using base::StringPiece;
using std::numeric_limits;
using std::string;
namespace net {
// static
void CryptoUtils::GenerateNonce(QuicWallTime now,
QuicRandom* random_generator,
StringPiece orbit,
string* nonce) {
// a 4-byte timestamp + 28 random bytes.
nonce->reserve(kNonceSize);
nonce->resize(kNonceSize);
uint32_t gmt_unix_time = static_cast<uint32_t>(now.ToUNIXSeconds());
// The time in the nonce must be encoded in big-endian because the
// strike-register depends on the nonces being ordered by time.
(*nonce)[0] = static_cast<char>(gmt_unix_time >> 24);
(*nonce)[1] = static_cast<char>(gmt_unix_time >> 16);
(*nonce)[2] = static_cast<char>(gmt_unix_time >> 8);
(*nonce)[3] = static_cast<char>(gmt_unix_time);
size_t bytes_written = 4;
if (orbit.size() == 8) {
memcpy(&(*nonce)[bytes_written], orbit.data(), orbit.size());
bytes_written += orbit.size();
}
random_generator->RandBytes(&(*nonce)[bytes_written],
kNonceSize - bytes_written);
}
// static
bool CryptoUtils::IsValidSNI(StringPiece sni) {
// TODO(rtenneti): Support RFC2396 hostname.
// NOTE: Microsoft does NOT enforce this spec, so if we throw away hostnames
// based on the above spec, we may be losing some hostnames that windows
// would consider valid. By far the most common hostname character NOT
// accepted by the above spec is '_'.
url::CanonHostInfo host_info;
string canonicalized_host(CanonicalizeHost(sni.as_string(), &host_info));
return !host_info.IsIPAddress() &&
IsCanonicalizedHostCompliant(canonicalized_host) &&
sni.find_last_of('.') != string::npos;
}
// static
string CryptoUtils::NormalizeHostname(const char* hostname) {
url::CanonHostInfo host_info;
string host(CanonicalizeHost(hostname, &host_info));
// Walk backwards over the string, stopping at the first trailing dot.
size_t host_end = host.length();
while (host_end != 0 && host[host_end - 1] == '.') {
host_end--;
}
// Erase the trailing dots.
if (host_end != host.length()) {
host.erase(host_end, host.length() - host_end);
}
return host;
}
// static
bool CryptoUtils::DeriveKeys(StringPiece premaster_secret,
QuicTag aead,
StringPiece client_nonce,
StringPiece server_nonce,
const string& hkdf_input,
Perspective perspective,
Diversification diversification,
CrypterPair* crypters,
string* subkey_secret) {
crypters->encrypter.reset(QuicEncrypter::Create(aead));
crypters->decrypter.reset(QuicDecrypter::Create(aead));
size_t key_bytes = crypters->encrypter->GetKeySize();
size_t nonce_prefix_bytes = crypters->encrypter->GetNoncePrefixSize();
size_t subkey_secret_bytes =
subkey_secret == nullptr ? 0 : premaster_secret.length();
StringPiece nonce = client_nonce;
string nonce_storage;
if (!server_nonce.empty()) {
nonce_storage = client_nonce.as_string() + server_nonce.as_string();
nonce = nonce_storage;
}
crypto::HKDF hkdf(premaster_secret, nonce, hkdf_input, key_bytes,
nonce_prefix_bytes, subkey_secret_bytes);
// Key derivation depends on the key diversification method being employed.
// both the client and the server support never doing key diversification.
// The server also supports immediate diversification, and the client
// supports pending diversification.
switch (diversification.mode()) {
case Diversification::NEVER: {
if (perspective == Perspective::IS_SERVER) {
if (!crypters->encrypter->SetKey(hkdf.server_write_key()) ||
!crypters->encrypter->SetNoncePrefix(hkdf.server_write_iv()) ||
!crypters->decrypter->SetKey(hkdf.client_write_key()) ||
!crypters->decrypter->SetNoncePrefix(hkdf.client_write_iv())) {
return false;
}
} else {
if (!crypters->encrypter->SetKey(hkdf.client_write_key()) ||
!crypters->encrypter->SetNoncePrefix(hkdf.client_write_iv()) ||
!crypters->decrypter->SetKey(hkdf.server_write_key()) ||
!crypters->decrypter->SetNoncePrefix(hkdf.server_write_iv())) {
return false;
}
}
break;
}
case Diversification::PENDING: {
if (perspective == Perspective::IS_SERVER) {
QUIC_BUG << "Pending diversification is only for clients.";
return false;
}
if (!crypters->encrypter->SetKey(hkdf.client_write_key()) ||
!crypters->encrypter->SetNoncePrefix(hkdf.client_write_iv()) ||
!crypters->decrypter->SetPreliminaryKey(hkdf.server_write_key()) ||
!crypters->decrypter->SetNoncePrefix(hkdf.server_write_iv())) {
return false;
}
break;
}
case Diversification::NOW: {
if (perspective == Perspective::IS_CLIENT) {
QUIC_BUG << "Immediate diversification is only for servers.";
return false;
}
string key, nonce_prefix;
QuicDecrypter::DiversifyPreliminaryKey(
hkdf.server_write_key(), hkdf.server_write_iv(),
*diversification.nonce(), key_bytes, nonce_prefix_bytes, &key,
&nonce_prefix);
if (!crypters->decrypter->SetKey(hkdf.client_write_key()) ||
!crypters->decrypter->SetNoncePrefix(hkdf.client_write_iv()) ||
!crypters->encrypter->SetKey(key) ||
!crypters->encrypter->SetNoncePrefix(nonce_prefix)) {
return false;
}
break;
}
default:
DCHECK(false);
}
if (subkey_secret != nullptr) {
hkdf.subkey_secret().CopyToString(subkey_secret);
}
return true;
}
// static
bool CryptoUtils::ExportKeyingMaterial(StringPiece subkey_secret,
StringPiece label,
StringPiece context,
size_t result_len,
string* result) {
for (size_t i = 0; i < label.length(); i++) {
if (label[i] == '\0') {
LOG(ERROR) << "ExportKeyingMaterial label may not contain NULs";
return false;
}
}
// Create HKDF info input: null-terminated label + length-prefixed context
if (context.length() >= numeric_limits<uint32_t>::max()) {
LOG(ERROR) << "Context value longer than 2^32";
return false;
}
uint32_t context_length = static_cast<uint32_t>(context.length());
string info = label.as_string();
info.push_back('\0');
info.append(reinterpret_cast<char*>(&context_length), sizeof(context_length));
info.append(context.data(), context.length());
crypto::HKDF hkdf(subkey_secret, StringPiece() /* no salt */, info,
result_len, 0 /* no fixed IV */, 0 /* no subkey secret */);
hkdf.client_write_key().CopyToString(result);
return true;
}
// static
uint64_t CryptoUtils::ComputeLeafCertHash(const std::string& cert) {
return QuicUtils::FNV1a_64_Hash(cert.data(), cert.size());
}
QuicErrorCode CryptoUtils::ValidateServerHello(
const CryptoHandshakeMessage& server_hello,
const QuicVersionVector& negotiated_versions,
string* error_details) {
DCHECK(error_details != nullptr);
if (server_hello.tag() != kSHLO) {
*error_details = "Bad tag";
return QUIC_INVALID_CRYPTO_MESSAGE_TYPE;
}
const QuicTag* supported_version_tags;
size_t num_supported_versions;
if (server_hello.GetTaglist(kVER, &supported_version_tags,
&num_supported_versions) != QUIC_NO_ERROR) {
*error_details = "server hello missing version list";
return QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER;
}
if (!negotiated_versions.empty()) {
bool mismatch = num_supported_versions != negotiated_versions.size();
for (size_t i = 0; i < num_supported_versions && !mismatch; ++i) {
mismatch = QuicTagToQuicVersion(supported_version_tags[i]) !=
negotiated_versions[i];
}
// The server sent a list of supported versions, and the connection
// reports that there was a version negotiation during the handshake.
// Ensure that these two lists are identical.
if (mismatch) {
*error_details = "Downgrade attack detected";
return QUIC_VERSION_NEGOTIATION_MISMATCH;
}
}
return QUIC_NO_ERROR;
}
QuicErrorCode CryptoUtils::ValidateClientHello(
const CryptoHandshakeMessage& client_hello,
QuicVersion version,
const QuicVersionVector& supported_versions,
string* error_details) {
if (client_hello.tag() != kCHLO) {
*error_details = "Bad tag";
return QUIC_INVALID_CRYPTO_MESSAGE_TYPE;
}
// If the client's preferred version is not the version we are currently
// speaking, then the client went through a version negotiation. In this
// case, we need to make sure that we actually do not support this version
// and that it wasn't a downgrade attack.
QuicTag client_version_tag;
if (client_hello.GetUint32(kVER, &client_version_tag) != QUIC_NO_ERROR) {
*error_details = "client hello missing version list";
return QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER;
}
QuicVersion client_version = QuicTagToQuicVersion(client_version_tag);
if (client_version != version) {
// Just because client_version is a valid version enum doesn't mean that
// this server actually supports that version, so we check to see if
// it's actually in the supported versions list.
for (size_t i = 0; i < supported_versions.size(); ++i) {
if (client_version == supported_versions[i]) {
*error_details = "Downgrade attack detected";
return QUIC_VERSION_NEGOTIATION_MISMATCH;
}
}
}
return QUIC_NO_ERROR;
}
#define RETURN_STRING_LITERAL(x) \
case x: \
return #x
// Returns the name of the HandshakeFailureReason as a char*
// static
const char* CryptoUtils::HandshakeFailureReasonToString(
HandshakeFailureReason reason) {
switch (reason) {
RETURN_STRING_LITERAL(HANDSHAKE_OK);
RETURN_STRING_LITERAL(CLIENT_NONCE_UNKNOWN_FAILURE);
RETURN_STRING_LITERAL(CLIENT_NONCE_INVALID_FAILURE);
RETURN_STRING_LITERAL(CLIENT_NONCE_NOT_UNIQUE_FAILURE);
RETURN_STRING_LITERAL(CLIENT_NONCE_INVALID_ORBIT_FAILURE);
RETURN_STRING_LITERAL(CLIENT_NONCE_INVALID_TIME_FAILURE);
RETURN_STRING_LITERAL(CLIENT_NONCE_STRIKE_REGISTER_TIMEOUT);
RETURN_STRING_LITERAL(CLIENT_NONCE_STRIKE_REGISTER_FAILURE);
RETURN_STRING_LITERAL(SERVER_NONCE_DECRYPTION_FAILURE);
RETURN_STRING_LITERAL(SERVER_NONCE_INVALID_FAILURE);
RETURN_STRING_LITERAL(SERVER_NONCE_NOT_UNIQUE_FAILURE);
RETURN_STRING_LITERAL(SERVER_NONCE_INVALID_TIME_FAILURE);
RETURN_STRING_LITERAL(SERVER_NONCE_REQUIRED_FAILURE);
RETURN_STRING_LITERAL(SERVER_CONFIG_INCHOATE_HELLO_FAILURE);
RETURN_STRING_LITERAL(SERVER_CONFIG_UNKNOWN_CONFIG_FAILURE);
RETURN_STRING_LITERAL(SOURCE_ADDRESS_TOKEN_INVALID_FAILURE);
RETURN_STRING_LITERAL(SOURCE_ADDRESS_TOKEN_DECRYPTION_FAILURE);
RETURN_STRING_LITERAL(SOURCE_ADDRESS_TOKEN_PARSE_FAILURE);
RETURN_STRING_LITERAL(SOURCE_ADDRESS_TOKEN_DIFFERENT_IP_ADDRESS_FAILURE);
RETURN_STRING_LITERAL(SOURCE_ADDRESS_TOKEN_CLOCK_SKEW_FAILURE);
RETURN_STRING_LITERAL(SOURCE_ADDRESS_TOKEN_EXPIRED_FAILURE);
RETURN_STRING_LITERAL(INVALID_EXPECTED_LEAF_CERTIFICATE);
RETURN_STRING_LITERAL(MAX_FAILURE_REASON);
}
// Return a default value so that we return this when |reason| doesn't match
// any HandshakeFailureReason.. This can happen when the message by the peer
// (attacker) has invalid reason.
return "INVALID_HANDSHAKE_FAILURE_REASON";
}
// static
void CryptoUtils::HashHandshakeMessage(const CryptoHandshakeMessage& message,
string* output) {
const QuicData& serialized = message.GetSerialized();
std::unique_ptr<crypto::SecureHash> hash(
crypto::SecureHash::Create(crypto::SecureHash::SHA256));
hash->Update(serialized.data(), serialized.length());
uint8_t digest[32];
hash->Finish(digest, sizeof(digest));
output->assign(reinterpret_cast<const char*>(&digest), sizeof(digest));
}
} // namespace net