[email protected] | cab34d6a | 2009-09-24 01:14:52 | [diff] [blame] | 1 | // Copyright (c) 2009 The Chromium Authors. All rights reserved. |
| 2 | // Use of this source code is governed by a BSD-style license that can be |
| 3 | // found in the LICENSE file. |
| 4 | |
[email protected] | cd81841 | 2010-03-19 03:23:15 | [diff] [blame] | 5 | #include "gfx/skbitmap_operations.h" |
[email protected] | cab34d6a | 2009-09-24 01:14:52 | [diff] [blame] | 6 | |
[email protected] | 0fb499a | 2009-11-10 21:03:33 | [diff] [blame] | 7 | #include <algorithm> |
[email protected] | 6e25ce8 | 2010-04-26 17:12:40 | [diff] [blame] | 8 | #include <string.h> |
[email protected] | 0fb499a | 2009-11-10 21:03:33 | [diff] [blame] | 9 | |
[email protected] | cab34d6a | 2009-09-24 01:14:52 | [diff] [blame] | 10 | #include "base/logging.h" |
| 11 | #include "third_party/skia/include/core/SkBitmap.h" |
[email protected] | 0fb499a | 2009-11-10 21:03:33 | [diff] [blame] | 12 | #include "third_party/skia/include/core/SkCanvas.h" |
[email protected] | cab34d6a | 2009-09-24 01:14:52 | [diff] [blame] | 13 | #include "third_party/skia/include/core/SkColorPriv.h" |
| 14 | #include "third_party/skia/include/core/SkUnPreMultiply.h" |
| 15 | |
| 16 | // static |
[email protected] | 0fb499a | 2009-11-10 21:03:33 | [diff] [blame] | 17 | SkBitmap SkBitmapOperations::CreateInvertedBitmap(const SkBitmap& image) { |
| 18 | DCHECK(image.config() == SkBitmap::kARGB_8888_Config); |
| 19 | |
| 20 | SkAutoLockPixels lock_image(image); |
| 21 | |
| 22 | SkBitmap inverted; |
| 23 | inverted.setConfig(SkBitmap::kARGB_8888_Config, image.width(), image.height(), |
| 24 | 0); |
| 25 | inverted.allocPixels(); |
| 26 | inverted.eraseARGB(0, 0, 0, 0); |
| 27 | |
| 28 | for (int y = 0; y < image.height(); ++y) { |
| 29 | uint32* image_row = image.getAddr32(0, y); |
| 30 | uint32* dst_row = inverted.getAddr32(0, y); |
| 31 | |
| 32 | for (int x = 0; x < image.width(); ++x) { |
| 33 | uint32 image_pixel = image_row[x]; |
| 34 | dst_row[x] = (image_pixel & 0xFF000000) | |
| 35 | (0x00FFFFFF - (image_pixel & 0x00FFFFFF)); |
| 36 | } |
| 37 | } |
| 38 | |
| 39 | return inverted; |
| 40 | } |
| 41 | |
| 42 | // static |
| 43 | SkBitmap SkBitmapOperations::CreateSuperimposedBitmap(const SkBitmap& first, |
| 44 | const SkBitmap& second) { |
| 45 | DCHECK(first.width() == second.width()); |
| 46 | DCHECK(first.height() == second.height()); |
| 47 | DCHECK(first.bytesPerPixel() == second.bytesPerPixel()); |
| 48 | DCHECK(first.config() == SkBitmap::kARGB_8888_Config); |
| 49 | |
| 50 | SkAutoLockPixels lock_first(first); |
| 51 | SkAutoLockPixels lock_second(second); |
| 52 | |
| 53 | SkBitmap superimposed; |
| 54 | superimposed.setConfig(SkBitmap::kARGB_8888_Config, |
| 55 | first.width(), first.height()); |
| 56 | superimposed.allocPixels(); |
| 57 | superimposed.eraseARGB(0, 0, 0, 0); |
| 58 | |
| 59 | SkCanvas canvas(superimposed); |
| 60 | |
| 61 | SkRect rect; |
| 62 | rect.fLeft = 0; |
| 63 | rect.fTop = 0; |
| 64 | rect.fRight = SkIntToScalar(first.width()); |
| 65 | rect.fBottom = SkIntToScalar(first.height()); |
| 66 | |
| 67 | canvas.drawBitmapRect(first, NULL, rect); |
| 68 | canvas.drawBitmapRect(second, NULL, rect); |
| 69 | |
| 70 | return superimposed; |
| 71 | } |
| 72 | |
| 73 | // static |
[email protected] | cab34d6a | 2009-09-24 01:14:52 | [diff] [blame] | 74 | SkBitmap SkBitmapOperations::CreateBlendedBitmap(const SkBitmap& first, |
| 75 | const SkBitmap& second, |
| 76 | double alpha) { |
| 77 | DCHECK((alpha >= 0) && (alpha <= 1)); |
| 78 | DCHECK(first.width() == second.width()); |
| 79 | DCHECK(first.height() == second.height()); |
| 80 | DCHECK(first.bytesPerPixel() == second.bytesPerPixel()); |
| 81 | DCHECK(first.config() == SkBitmap::kARGB_8888_Config); |
| 82 | |
| 83 | // Optimize for case where we won't need to blend anything. |
| 84 | static const double alpha_min = 1.0 / 255; |
| 85 | static const double alpha_max = 254.0 / 255; |
| 86 | if (alpha < alpha_min) |
| 87 | return first; |
| 88 | else if (alpha > alpha_max) |
| 89 | return second; |
| 90 | |
| 91 | SkAutoLockPixels lock_first(first); |
| 92 | SkAutoLockPixels lock_second(second); |
| 93 | |
| 94 | SkBitmap blended; |
| 95 | blended.setConfig(SkBitmap::kARGB_8888_Config, first.width(), first.height(), |
| 96 | 0); |
| 97 | blended.allocPixels(); |
| 98 | blended.eraseARGB(0, 0, 0, 0); |
| 99 | |
| 100 | double first_alpha = 1 - alpha; |
| 101 | |
| 102 | for (int y = 0; y < first.height(); ++y) { |
| 103 | uint32* first_row = first.getAddr32(0, y); |
| 104 | uint32* second_row = second.getAddr32(0, y); |
| 105 | uint32* dst_row = blended.getAddr32(0, y); |
| 106 | |
| 107 | for (int x = 0; x < first.width(); ++x) { |
| 108 | uint32 first_pixel = first_row[x]; |
| 109 | uint32 second_pixel = second_row[x]; |
| 110 | |
| 111 | int a = static_cast<int>((SkColorGetA(first_pixel) * first_alpha) + |
| 112 | (SkColorGetA(second_pixel) * alpha)); |
| 113 | int r = static_cast<int>((SkColorGetR(first_pixel) * first_alpha) + |
| 114 | (SkColorGetR(second_pixel) * alpha)); |
| 115 | int g = static_cast<int>((SkColorGetG(first_pixel) * first_alpha) + |
| 116 | (SkColorGetG(second_pixel) * alpha)); |
| 117 | int b = static_cast<int>((SkColorGetB(first_pixel) * first_alpha) + |
| 118 | (SkColorGetB(second_pixel) * alpha)); |
| 119 | |
| 120 | dst_row[x] = SkColorSetARGB(a, r, g, b); |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | return blended; |
| 125 | } |
| 126 | |
| 127 | // static |
| 128 | SkBitmap SkBitmapOperations::CreateMaskedBitmap(const SkBitmap& rgb, |
| 129 | const SkBitmap& alpha) { |
| 130 | DCHECK(rgb.width() == alpha.width()); |
| 131 | DCHECK(rgb.height() == alpha.height()); |
| 132 | DCHECK(rgb.bytesPerPixel() == alpha.bytesPerPixel()); |
| 133 | DCHECK(rgb.config() == SkBitmap::kARGB_8888_Config); |
| 134 | DCHECK(alpha.config() == SkBitmap::kARGB_8888_Config); |
| 135 | |
| 136 | SkBitmap masked; |
| 137 | masked.setConfig(SkBitmap::kARGB_8888_Config, rgb.width(), rgb.height(), 0); |
| 138 | masked.allocPixels(); |
| 139 | masked.eraseARGB(0, 0, 0, 0); |
| 140 | |
| 141 | SkAutoLockPixels lock_rgb(rgb); |
| 142 | SkAutoLockPixels lock_alpha(alpha); |
| 143 | SkAutoLockPixels lock_masked(masked); |
| 144 | |
| 145 | for (int y = 0; y < masked.height(); ++y) { |
| 146 | uint32* rgb_row = rgb.getAddr32(0, y); |
| 147 | uint32* alpha_row = alpha.getAddr32(0, y); |
| 148 | uint32* dst_row = masked.getAddr32(0, y); |
| 149 | |
| 150 | for (int x = 0; x < masked.width(); ++x) { |
| 151 | SkColor rgb_pixel = SkUnPreMultiply::PMColorToColor(rgb_row[x]); |
| 152 | int alpha = SkAlphaMul(SkColorGetA(rgb_pixel), SkColorGetA(alpha_row[x])); |
| 153 | dst_row[x] = SkColorSetARGB(alpha, |
| 154 | SkAlphaMul(SkColorGetR(rgb_pixel), alpha), |
| 155 | SkAlphaMul(SkColorGetG(rgb_pixel), alpha), |
| 156 | SkAlphaMul(SkColorGetB(rgb_pixel), alpha)); |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | return masked; |
| 161 | } |
| 162 | |
| 163 | // static |
| 164 | SkBitmap SkBitmapOperations::CreateButtonBackground(SkColor color, |
| 165 | const SkBitmap& image, |
| 166 | const SkBitmap& mask) { |
| 167 | DCHECK(image.config() == SkBitmap::kARGB_8888_Config); |
| 168 | DCHECK(mask.config() == SkBitmap::kARGB_8888_Config); |
| 169 | |
| 170 | SkBitmap background; |
| 171 | background.setConfig( |
| 172 | SkBitmap::kARGB_8888_Config, mask.width(), mask.height(), 0); |
| 173 | background.allocPixels(); |
| 174 | |
| 175 | double bg_a = SkColorGetA(color); |
| 176 | double bg_r = SkColorGetR(color); |
| 177 | double bg_g = SkColorGetG(color); |
| 178 | double bg_b = SkColorGetB(color); |
| 179 | |
| 180 | SkAutoLockPixels lock_mask(mask); |
| 181 | SkAutoLockPixels lock_image(image); |
| 182 | SkAutoLockPixels lock_background(background); |
| 183 | |
| 184 | for (int y = 0; y < mask.height(); ++y) { |
| 185 | uint32* dst_row = background.getAddr32(0, y); |
| 186 | uint32* image_row = image.getAddr32(0, y % image.height()); |
| 187 | uint32* mask_row = mask.getAddr32(0, y); |
| 188 | |
| 189 | for (int x = 0; x < mask.width(); ++x) { |
| 190 | uint32 image_pixel = image_row[x % image.width()]; |
| 191 | |
| 192 | double img_a = SkColorGetA(image_pixel); |
| 193 | double img_r = SkColorGetR(image_pixel); |
| 194 | double img_g = SkColorGetG(image_pixel); |
| 195 | double img_b = SkColorGetB(image_pixel); |
| 196 | |
| 197 | double img_alpha = static_cast<double>(img_a) / 255.0; |
| 198 | double img_inv = 1 - img_alpha; |
| 199 | |
| 200 | double mask_a = static_cast<double>(SkColorGetA(mask_row[x])) / 255.0; |
| 201 | |
| 202 | dst_row[x] = SkColorSetARGB( |
| 203 | static_cast<int>(std::min(255.0, bg_a + img_a) * mask_a), |
| 204 | static_cast<int>(((bg_r * img_inv) + (img_r * img_alpha)) * mask_a), |
| 205 | static_cast<int>(((bg_g * img_inv) + (img_g * img_alpha)) * mask_a), |
| 206 | static_cast<int>(((bg_b * img_inv) + (img_b * img_alpha)) * mask_a)); |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | return background; |
| 211 | } |
| 212 | |
[email protected] | 6e25ce8 | 2010-04-26 17:12:40 | [diff] [blame] | 213 | namespace { |
| 214 | namespace HSLShift { |
| 215 | |
| 216 | // TODO(viettrungluu): Some things have yet to be optimized at all. |
| 217 | |
| 218 | // Notes on and conventions used in the following code |
| 219 | // |
| 220 | // Conventions: |
| 221 | // - R, G, B, A = obvious; as variables: |r|, |g|, |b|, |a| (see also below) |
| 222 | // - H, S, L = obvious; as variables: |h|, |s|, |l| (see also below) |
| 223 | // - variables derived from S, L shift parameters: |sdec| and |sinc| for S |
| 224 | // increase and decrease factors, |ldec| and |linc| for L (see also below) |
| 225 | // |
| 226 | // To try to optimize HSL shifts, we do several things: |
| 227 | // - Avoid unpremultiplying (then processing) then premultiplying. This means |
| 228 | // that R, G, B values (and also L, but not H and S) should be treated as |
| 229 | // having a range of 0..A (where A is alpha). |
| 230 | // - Do things in integer/fixed-point. This avoids costly conversions between |
| 231 | // floating-point and integer, though I should study the tradeoff more |
| 232 | // carefully (presumably, at some point of processing complexity, converting |
| 233 | // and processing using simpler floating-point code will begin to win in |
| 234 | // performance). Also to be studied is the speed/type of floating point |
| 235 | // conversions; see, e.g., <http://www.stereopsis.com/sree/fpu2006.html>. |
| 236 | // |
| 237 | // Conventions for fixed-point arithmetic |
| 238 | // - Each function has a constant denominator (called |den|, which should be a |
| 239 | // power of 2), appropriate for the computations done in that function. |
| 240 | // - A value |x| is then typically represented by a numerator, named |x_num|, |
| 241 | // so that its actual value is |x_num / den| (casting to floating-point |
| 242 | // before division). |
| 243 | // - To obtain |x_num| from |x|, simply multiply by |den|, i.e., |x_num = x * |
| 244 | // den| (casting appropriately). |
| 245 | // - When necessary, a value |x| may also be represented as a numerator over |
| 246 | // the denominator squared (set |den2 = den * den|). In such a case, the |
| 247 | // corresponding variable is called |x_num2| (so that its actual value is |
| 248 | // |x_num^2 / den2|. |
| 249 | // - The representation of the product of |x| and |y| is be called |x_y_num| if |
| 250 | // |x * y == x_y_num / den|, and |xy_num2| if |x * y == x_y_num2 / den2|. In |
| 251 | // the latter case, notice that one can calculate |x_y_num2 = x_num * y_num|. |
| 252 | |
| 253 | // Routine used to process a line; typically specialized for specific kinds of |
| 254 | // HSL shifts (to optimize). |
| 255 | typedef void (*LineProcessor)(color_utils::HSL, |
| 256 | const SkPMColor*, |
| 257 | SkPMColor*, |
| 258 | int width); |
| 259 | |
| 260 | enum OperationOnH { kOpHNone = 0, kOpHShift, kNumHOps }; |
| 261 | enum OperationOnS { kOpSNone = 0, kOpSDec, kOpSInc, kNumSOps }; |
| 262 | enum OperationOnL { kOpLNone = 0, kOpLDec, kOpLInc, kNumLOps }; |
| 263 | |
| 264 | // Epsilon used to judge when shift values are close enough to various critical |
| 265 | // values (typically 0.5, which yields a no-op for S and L shifts. 1/256 should |
| 266 | // be small enough, but let's play it safe> |
| 267 | const double epsilon = 0.0005; |
| 268 | |
| 269 | // Line processor: default/universal (i.e., old-school). |
| 270 | void LineProcDefault(color_utils::HSL hsl_shift, const SkPMColor* in, |
| 271 | SkPMColor* out, int width) { |
| 272 | for (int x = 0; x < width; x++) { |
| 273 | out[x] = SkPreMultiplyColor(color_utils::HSLShift( |
| 274 | SkUnPreMultiply::PMColorToColor(in[x]), hsl_shift)); |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | // Line processor: no-op (i.e., copy). |
| 279 | void LineProcCopy(color_utils::HSL hsl_shift, const SkPMColor* in, |
| 280 | SkPMColor* out, int width) { |
| 281 | DCHECK(hsl_shift.h < 0); |
| 282 | DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon); |
| 283 | DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon); |
| 284 | memcpy(out, in, static_cast<size_t>(width) * sizeof(out[0])); |
| 285 | } |
| 286 | |
| 287 | // Line processor: H no-op, S no-op, L decrease. |
| 288 | void LineProcHnopSnopLdec(color_utils::HSL hsl_shift, const SkPMColor* in, |
| 289 | SkPMColor* out, int width) { |
| 290 | const uint32_t den = 65536; |
| 291 | |
| 292 | DCHECK(hsl_shift.h < 0); |
| 293 | DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon); |
| 294 | DCHECK(hsl_shift.l <= 0.5 - HSLShift::epsilon && hsl_shift.l >= 0); |
| 295 | |
| 296 | uint32_t ldec_num = static_cast<uint32_t>(hsl_shift.l * 2 * den); |
| 297 | for (int x = 0; x < width; x++) { |
| 298 | uint32_t a = SkGetPackedA32(in[x]); |
| 299 | uint32_t r = SkGetPackedR32(in[x]); |
| 300 | uint32_t g = SkGetPackedG32(in[x]); |
| 301 | uint32_t b = SkGetPackedB32(in[x]); |
| 302 | r = r * ldec_num / den; |
| 303 | g = g * ldec_num / den; |
| 304 | b = b * ldec_num / den; |
| 305 | out[x] = SkPackARGB32(a, r, g, b); |
| 306 | } |
| 307 | } |
| 308 | |
| 309 | // Line processor: H no-op, S no-op, L increase. |
| 310 | void LineProcHnopSnopLinc(color_utils::HSL hsl_shift, const SkPMColor* in, |
| 311 | SkPMColor* out, int width) { |
| 312 | const uint32_t den = 65536; |
| 313 | |
| 314 | DCHECK(hsl_shift.h < 0); |
| 315 | DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon); |
| 316 | DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1); |
| 317 | |
| 318 | uint32_t linc_num = static_cast<uint32_t>((hsl_shift.l - 0.5) * 2 * den); |
| 319 | for (int x = 0; x < width; x++) { |
| 320 | uint32_t a = SkGetPackedA32(in[x]); |
| 321 | uint32_t r = SkGetPackedR32(in[x]); |
| 322 | uint32_t g = SkGetPackedG32(in[x]); |
| 323 | uint32_t b = SkGetPackedB32(in[x]); |
| 324 | r += (a - r) * linc_num / den; |
| 325 | g += (a - g) * linc_num / den; |
| 326 | b += (a - b) * linc_num / den; |
| 327 | out[x] = SkPackARGB32(a, r, g, b); |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | // Saturation changes modifications in RGB |
| 332 | // |
| 333 | // (Note that as a further complication, the values we deal in are |
| 334 | // premultiplied, so R/G/B values must be in the range 0..A. For mathematical |
| 335 | // purposes, one may as well use r=R/A, g=G/A, b=B/A. Without loss of |
| 336 | // generality, assume that R/G/B values are in the range 0..1.) |
| 337 | // |
| 338 | // Let Max = max(R,G,B), Min = min(R,G,B), and Med be the median value. Then L = |
| 339 | // (Max+Min)/2. If L is to remain constant, Max+Min must also remain constant. |
| 340 | // |
| 341 | // For H to remain constant, first, the (numerical) order of R/G/B (from |
| 342 | // smallest to largest) must remain the same. Second, all the ratios |
| 343 | // (R-G)/(Max-Min), (R-B)/(Max-Min), (G-B)/(Max-Min) must remain constant (of |
| 344 | // course, if Max = Min, then S = 0 and no saturation change is well-defined, |
| 345 | // since H is not well-defined). |
| 346 | // |
| 347 | // Let C_max be a colour with value Max, C_min be one with value Min, and C_med |
| 348 | // the remaining colour. Increasing saturation (to the maximum) is accomplished |
| 349 | // by increasing the value of C_max while simultaneously decreasing C_min and |
| 350 | // changing C_med so that the ratios are maintained; for the latter, it suffices |
| 351 | // to keep (C_med-C_min)/(C_max-C_min) constant (and equal to |
| 352 | // (Med-Min)/(Max-Min)). |
| 353 | |
| 354 | // Line processor: H no-op, S decrease, L no-op. |
| 355 | void LineProcHnopSdecLnop(color_utils::HSL hsl_shift, const SkPMColor* in, |
| 356 | SkPMColor* out, int width) { |
| 357 | DCHECK(hsl_shift.h < 0); |
| 358 | DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon); |
| 359 | DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon); |
| 360 | |
| 361 | const int32_t denom = 65536; |
| 362 | int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom); |
| 363 | for (int x = 0; x < width; x++) { |
| 364 | int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x])); |
| 365 | int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x])); |
| 366 | int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x])); |
| 367 | int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x])); |
| 368 | |
| 369 | int32_t vmax, vmin; |
| 370 | if (r > g) { // This uses 3 compares rather than 4. |
| 371 | vmax = std::max(r, b); |
| 372 | vmin = std::min(g, b); |
| 373 | } else { |
| 374 | vmax = std::max(g, b); |
| 375 | vmin = std::min(r, b); |
| 376 | } |
| 377 | |
| 378 | // Use denom * L to avoid rounding. |
| 379 | int32_t denom_l = (vmax + vmin) * (denom / 2); |
| 380 | int32_t s_numer_l = (vmax + vmin) * s_numer / 2; |
| 381 | |
| 382 | r = (denom_l + r * s_numer - s_numer_l) / denom; |
| 383 | g = (denom_l + g * s_numer - s_numer_l) / denom; |
| 384 | b = (denom_l + b * s_numer - s_numer_l) / denom; |
| 385 | out[x] = SkPackARGB32(a, r, g, b); |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | // Line processor: H no-op, S decrease, L decrease. |
| 390 | void LineProcHnopSdecLdec(color_utils::HSL hsl_shift, const SkPMColor* in, |
| 391 | SkPMColor* out, int width) { |
| 392 | DCHECK(hsl_shift.h < 0); |
| 393 | DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon); |
| 394 | DCHECK(hsl_shift.l >= 0 && hsl_shift.l <= 0.5 - HSLShift::epsilon); |
| 395 | |
| 396 | // Can't be too big since we need room for denom*denom and a bit for sign. |
| 397 | const int32_t denom = 1024; |
| 398 | int32_t l_numer = static_cast<int32_t>(hsl_shift.l * 2 * denom); |
| 399 | int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom); |
| 400 | for (int x = 0; x < width; x++) { |
| 401 | int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x])); |
| 402 | int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x])); |
| 403 | int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x])); |
| 404 | int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x])); |
| 405 | |
| 406 | int32_t vmax, vmin; |
| 407 | if (r > g) { // This uses 3 compares rather than 4. |
| 408 | vmax = std::max(r, b); |
| 409 | vmin = std::min(g, b); |
| 410 | } else { |
| 411 | vmax = std::max(g, b); |
| 412 | vmin = std::min(r, b); |
| 413 | } |
| 414 | |
| 415 | // Use denom * L to avoid rounding. |
| 416 | int32_t denom_l = (vmax + vmin) * (denom / 2); |
| 417 | int32_t s_numer_l = (vmax + vmin) * s_numer / 2; |
| 418 | |
| 419 | r = (denom_l + r * s_numer - s_numer_l) * l_numer / (denom * denom); |
| 420 | g = (denom_l + g * s_numer - s_numer_l) * l_numer / (denom * denom); |
| 421 | b = (denom_l + b * s_numer - s_numer_l) * l_numer / (denom * denom); |
| 422 | out[x] = SkPackARGB32(a, r, g, b); |
| 423 | } |
| 424 | } |
| 425 | |
| 426 | // Line processor: H no-op, S decrease, L increase. |
| 427 | void LineProcHnopSdecLinc(color_utils::HSL hsl_shift, const SkPMColor* in, |
| 428 | SkPMColor* out, int width) { |
| 429 | DCHECK(hsl_shift.h < 0); |
| 430 | DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon); |
| 431 | DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1); |
| 432 | |
| 433 | // Can't be too big since we need room for denom*denom and a bit for sign. |
| 434 | const int32_t denom = 1024; |
| 435 | int32_t l_numer = static_cast<int32_t>((hsl_shift.l - 0.5) * 2 * denom); |
| 436 | int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom); |
| 437 | for (int x = 0; x < width; x++) { |
| 438 | int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x])); |
| 439 | int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x])); |
| 440 | int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x])); |
| 441 | int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x])); |
| 442 | |
| 443 | int32_t vmax, vmin; |
| 444 | if (r > g) { // This uses 3 compares rather than 4. |
| 445 | vmax = std::max(r, b); |
| 446 | vmin = std::min(g, b); |
| 447 | } else { |
| 448 | vmax = std::max(g, b); |
| 449 | vmin = std::min(r, b); |
| 450 | } |
| 451 | |
| 452 | // Use denom * L to avoid rounding. |
| 453 | int32_t denom_l = (vmax + vmin) * (denom / 2); |
| 454 | int32_t s_numer_l = (vmax + vmin) * s_numer / 2; |
| 455 | |
| 456 | r = denom_l + r * s_numer - s_numer_l; |
| 457 | g = denom_l + g * s_numer - s_numer_l; |
| 458 | b = denom_l + b * s_numer - s_numer_l; |
| 459 | |
| 460 | r = (r * denom + (a * denom - r) * l_numer) / (denom * denom); |
| 461 | g = (g * denom + (a * denom - g) * l_numer) / (denom * denom); |
| 462 | b = (b * denom + (a * denom - b) * l_numer) / (denom * denom); |
| 463 | out[x] = SkPackARGB32(a, r, g, b); |
| 464 | } |
| 465 | } |
| 466 | |
| 467 | const LineProcessor kLineProcessors[kNumHOps][kNumSOps][kNumLOps] = { |
| 468 | { // H: kOpHNone |
| 469 | { // S: kOpSNone |
| 470 | LineProcCopy, // L: kOpLNone |
| 471 | LineProcHnopSnopLdec, // L: kOpLDec |
| 472 | LineProcHnopSnopLinc // L: kOpLInc |
| 473 | }, |
| 474 | { // S: kOpSDec |
| 475 | LineProcHnopSdecLnop, // L: kOpLNone |
| 476 | LineProcHnopSdecLdec, // L: kOpLDec |
| 477 | LineProcHnopSdecLinc // L: kOpLInc |
| 478 | }, |
| 479 | { // S: kOpSInc |
| 480 | LineProcDefault, // L: kOpLNone |
| 481 | LineProcDefault, // L: kOpLDec |
| 482 | LineProcDefault // L: kOpLInc |
| 483 | } |
| 484 | }, |
| 485 | { // H: kOpHShift |
| 486 | { // S: kOpSNone |
| 487 | LineProcDefault, // L: kOpLNone |
| 488 | LineProcDefault, // L: kOpLDec |
| 489 | LineProcDefault // L: kOpLInc |
| 490 | }, |
| 491 | { // S: kOpSDec |
| 492 | LineProcDefault, // L: kOpLNone |
| 493 | LineProcDefault, // L: kOpLDec |
| 494 | LineProcDefault // L: kOpLInc |
| 495 | }, |
| 496 | { // S: kOpSInc |
| 497 | LineProcDefault, // L: kOpLNone |
| 498 | LineProcDefault, // L: kOpLDec |
| 499 | LineProcDefault // L: kOpLInc |
| 500 | } |
| 501 | } |
| 502 | }; |
| 503 | |
| 504 | } // namespace HSLShift |
| 505 | } // namespace |
[email protected] | cab34d6a | 2009-09-24 01:14:52 | [diff] [blame] | 506 | |
| 507 | // static |
| 508 | SkBitmap SkBitmapOperations::CreateHSLShiftedBitmap( |
| 509 | const SkBitmap& bitmap, |
| 510 | color_utils::HSL hsl_shift) { |
[email protected] | 6e25ce8 | 2010-04-26 17:12:40 | [diff] [blame] | 511 | // Default to NOPs. |
| 512 | HSLShift::OperationOnH H_op = HSLShift::kOpHNone; |
| 513 | HSLShift::OperationOnS S_op = HSLShift::kOpSNone; |
| 514 | HSLShift::OperationOnL L_op = HSLShift::kOpLNone; |
| 515 | |
| 516 | if (hsl_shift.h >= 0 && hsl_shift.h <= 1) |
| 517 | H_op = HSLShift::kOpHShift; |
| 518 | |
| 519 | // Saturation shift: 0 -> fully desaturate, 0.5 -> NOP, 1 -> fully saturate. |
| 520 | if (hsl_shift.s >= 0 && hsl_shift.s <= (0.5 - HSLShift::epsilon)) |
| 521 | S_op = HSLShift::kOpSDec; |
| 522 | else if (hsl_shift.s >= (0.5 + HSLShift::epsilon)) |
| 523 | S_op = HSLShift::kOpSInc; |
| 524 | |
| 525 | // Lightness shift: 0 -> black, 0.5 -> NOP, 1 -> white. |
| 526 | if (hsl_shift.l >= 0 && hsl_shift.l <= (0.5 - HSLShift::epsilon)) |
| 527 | L_op = HSLShift::kOpLDec; |
| 528 | else if (hsl_shift.l >= (0.5 + HSLShift::epsilon)) |
| 529 | L_op = HSLShift::kOpLInc; |
| 530 | |
| 531 | HSLShift::LineProcessor line_proc = |
| 532 | HSLShift::kLineProcessors[H_op][S_op][L_op]; |
| 533 | |
[email protected] | cab34d6a | 2009-09-24 01:14:52 | [diff] [blame] | 534 | DCHECK(bitmap.empty() == false); |
| 535 | DCHECK(bitmap.config() == SkBitmap::kARGB_8888_Config); |
| 536 | |
| 537 | SkBitmap shifted; |
| 538 | shifted.setConfig(SkBitmap::kARGB_8888_Config, bitmap.width(), |
| 539 | bitmap.height(), 0); |
| 540 | shifted.allocPixels(); |
| 541 | shifted.eraseARGB(0, 0, 0, 0); |
| 542 | shifted.setIsOpaque(false); |
| 543 | |
| 544 | SkAutoLockPixels lock_bitmap(bitmap); |
| 545 | SkAutoLockPixels lock_shifted(shifted); |
| 546 | |
| 547 | // Loop through the pixels of the original bitmap. |
| 548 | for (int y = 0; y < bitmap.height(); ++y) { |
| 549 | SkPMColor* pixels = bitmap.getAddr32(0, y); |
| 550 | SkPMColor* tinted_pixels = shifted.getAddr32(0, y); |
| 551 | |
[email protected] | 6e25ce8 | 2010-04-26 17:12:40 | [diff] [blame] | 552 | (*line_proc)(hsl_shift, pixels, tinted_pixels, bitmap.width()); |
[email protected] | cab34d6a | 2009-09-24 01:14:52 | [diff] [blame] | 553 | } |
| 554 | |
| 555 | return shifted; |
| 556 | } |
| 557 | |
| 558 | // static |
| 559 | SkBitmap SkBitmapOperations::CreateTiledBitmap(const SkBitmap& source, |
| 560 | int src_x, int src_y, |
| 561 | int dst_w, int dst_h) { |
| 562 | DCHECK(source.getConfig() == SkBitmap::kARGB_8888_Config); |
| 563 | |
| 564 | SkBitmap cropped; |
| 565 | cropped.setConfig(SkBitmap::kARGB_8888_Config, dst_w, dst_h, 0); |
| 566 | cropped.allocPixels(); |
| 567 | cropped.eraseARGB(0, 0, 0, 0); |
| 568 | |
| 569 | SkAutoLockPixels lock_source(source); |
| 570 | SkAutoLockPixels lock_cropped(cropped); |
| 571 | |
| 572 | // Loop through the pixels of the original bitmap. |
| 573 | for (int y = 0; y < dst_h; ++y) { |
| 574 | int y_pix = (src_y + y) % source.height(); |
| 575 | while (y_pix < 0) |
| 576 | y_pix += source.height(); |
| 577 | |
| 578 | uint32* source_row = source.getAddr32(0, y_pix); |
| 579 | uint32* dst_row = cropped.getAddr32(0, y); |
| 580 | |
| 581 | for (int x = 0; x < dst_w; ++x) { |
| 582 | int x_pix = (src_x + x) % source.width(); |
| 583 | while (x_pix < 0) |
| 584 | x_pix += source.width(); |
| 585 | |
| 586 | dst_row[x] = source_row[x_pix]; |
| 587 | } |
| 588 | } |
| 589 | |
| 590 | return cropped; |
| 591 | } |
| 592 | |
| 593 | // static |
| 594 | SkBitmap SkBitmapOperations::DownsampleByTwoUntilSize(const SkBitmap& bitmap, |
| 595 | int min_w, int min_h) { |
| 596 | if ((bitmap.width() <= min_w) || (bitmap.height() <= min_h) || |
| 597 | (min_w < 0) || (min_h < 0)) |
| 598 | return bitmap; |
| 599 | |
| 600 | // Since bitmaps are refcounted, this copy will be fast. |
| 601 | SkBitmap current = bitmap; |
| 602 | while ((current.width() >= min_w * 2) && (current.height() >= min_h * 2) && |
| 603 | (current.width() > 1) && (current.height() > 1)) |
| 604 | current = DownsampleByTwo(current); |
| 605 | return current; |
| 606 | } |
| 607 | |
| 608 | // static |
| 609 | SkBitmap SkBitmapOperations::DownsampleByTwo(const SkBitmap& bitmap) { |
| 610 | // Handle the nop case. |
| 611 | if ((bitmap.width() <= 1) || (bitmap.height() <= 1)) |
| 612 | return bitmap; |
| 613 | |
| 614 | SkBitmap result; |
| 615 | result.setConfig(SkBitmap::kARGB_8888_Config, |
| 616 | (bitmap.width() + 1) / 2, (bitmap.height() + 1) / 2); |
| 617 | result.allocPixels(); |
| 618 | |
| 619 | SkAutoLockPixels lock(bitmap); |
| 620 | for (int dest_y = 0; dest_y < result.height(); ++dest_y) { |
| 621 | for (int dest_x = 0; dest_x < result.width(); ++dest_x) { |
| 622 | // This code is based on downsampleby2_proc32 in SkBitmap.cpp. It is very |
| 623 | // clever in that it does two channels at once: alpha and green ("ag") |
| 624 | // and red and blue ("rb"). Each channel gets averaged across 4 pixels |
| 625 | // to get the result. |
| 626 | int src_x = dest_x << 1; |
| 627 | int src_y = dest_y << 1; |
| 628 | const SkPMColor* cur_src = bitmap.getAddr32(src_x, src_y); |
| 629 | SkPMColor tmp, ag, rb; |
| 630 | |
| 631 | // Top left pixel of the 2x2 block. |
| 632 | tmp = *cur_src; |
| 633 | ag = (tmp >> 8) & 0xFF00FF; |
| 634 | rb = tmp & 0xFF00FF; |
| 635 | if (src_x < (bitmap.width() - 1)) |
| 636 | ++cur_src; |
| 637 | |
| 638 | // Top right pixel of the 2x2 block. |
| 639 | tmp = *cur_src; |
| 640 | ag += (tmp >> 8) & 0xFF00FF; |
| 641 | rb += tmp & 0xFF00FF; |
| 642 | if (src_y < (bitmap.height() - 1)) |
| 643 | cur_src = bitmap.getAddr32(src_x, src_y + 1); |
| 644 | else |
| 645 | cur_src = bitmap.getAddr32(src_x, src_y); // Move back to the first. |
| 646 | |
| 647 | // Bottom left pixel of the 2x2 block. |
| 648 | tmp = *cur_src; |
| 649 | ag += (tmp >> 8) & 0xFF00FF; |
| 650 | rb += tmp & 0xFF00FF; |
| 651 | if (src_x < (bitmap.width() - 1)) |
| 652 | ++cur_src; |
| 653 | |
| 654 | // Bottom right pixel of the 2x2 block. |
| 655 | tmp = *cur_src; |
| 656 | ag += (tmp >> 8) & 0xFF00FF; |
| 657 | rb += tmp & 0xFF00FF; |
| 658 | |
| 659 | // Put the channels back together, dividing each by 4 to get the average. |
| 660 | // |ag| has the alpha and green channels shifted right by 8 bits from |
| 661 | // there they should end up, so shifting left by 6 gives them in the |
| 662 | // correct position divided by 4. |
| 663 | *result.getAddr32(dest_x, dest_y) = |
| 664 | ((rb >> 2) & 0xFF00FF) | ((ag << 6) & 0xFF00FF00); |
| 665 | } |
| 666 | } |
| 667 | |
| 668 | return result; |
| 669 | } |
| 670 | |
[email protected] | 3eaf0ecd | 2010-07-15 15:30:55 | [diff] [blame] | 671 | // static |
| 672 | SkBitmap SkBitmapOperations::UnPreMultiply(const SkBitmap& bitmap) { |
| 673 | if (bitmap.isNull()) |
| 674 | return bitmap; |
| 675 | if (bitmap.isOpaque()) |
| 676 | return bitmap; |
| 677 | |
| 678 | SkBitmap opaque_bitmap; |
| 679 | opaque_bitmap.setConfig(bitmap.config(), bitmap.width(), bitmap.height()); |
| 680 | opaque_bitmap.allocPixels(); |
| 681 | |
| 682 | { |
| 683 | SkAutoLockPixels bitmap_lock(bitmap); |
| 684 | SkAutoLockPixels opaque_bitmap_lock(opaque_bitmap); |
| 685 | for (int y = 0; y < opaque_bitmap.height(); y++) { |
| 686 | for (int x = 0; x < opaque_bitmap.width(); x++) { |
| 687 | uint32 src_pixel = *bitmap.getAddr32(x, y); |
| 688 | uint32* dst_pixel = opaque_bitmap.getAddr32(x, y); |
| 689 | SkColor unmultiplied = SkUnPreMultiply::PMColorToColor(src_pixel); |
| 690 | *dst_pixel = unmultiplied; |
| 691 | } |
| 692 | } |
| 693 | } |
| 694 | |
| 695 | opaque_bitmap.setIsOpaque(true); |
| 696 | return opaque_bitmap; |
| 697 | } |
[email protected] | 8d1b864d1 | 2010-10-10 00:04:34 | [diff] [blame^] | 698 | |
| 699 | // static |
| 700 | SkBitmap SkBitmapOperations::CreateTransposedBtmap(const SkBitmap& image) { |
| 701 | DCHECK(image.config() == SkBitmap::kARGB_8888_Config); |
| 702 | |
| 703 | SkAutoLockPixels lock_image(image); |
| 704 | |
| 705 | SkBitmap transposed; |
| 706 | transposed.setConfig( |
| 707 | SkBitmap::kARGB_8888_Config, image.height(), image.width(), 0); |
| 708 | transposed.allocPixels(); |
| 709 | transposed.eraseARGB(0, 0, 0, 0); |
| 710 | |
| 711 | for (int y = 0; y < image.height(); ++y) { |
| 712 | uint32* image_row = image.getAddr32(0, y); |
| 713 | for (int x = 0; x < image.width(); ++x) { |
| 714 | uint32* dst = transposed.getAddr32(y, x); |
| 715 | *dst = image_row[x]; |
| 716 | } |
| 717 | } |
| 718 | |
| 719 | return transposed; |
| 720 | } |
| 721 | |