% Generated by roxygen2: do not edit by hand % Please edit documentation in R/runSNF.R \name{CiteFuse} \alias{CiteFuse} \title{CiteFuse} \usage{ CiteFuse( sce, altExp_name = "ADT", W_list = NULL, gene_select = TRUE, dist_cal_RNA = "correlation", dist_cal_ADT = "propr", ADT_subset = NULL, K_knn = 20, K_knn_Aff = 30, sigma = 0.45, t = 10, metadata_names = NULL, verbose = TRUE, topN = 2000 ) } \arguments{ \item{sce}{a SingleCellExperiment} \item{altExp_name}{expression name of ADT matrix} \item{W_list}{affinity list, if it is NULL, the function will calculate it.} \item{gene_select}{whether highly variable genes will be selected for RNA-seq to calcualte simlarity matrix using `scran` package} \item{dist_cal_RNA}{similarity metrics used for RNA matrix} \item{dist_cal_ADT}{similarity metrics used for ADT matrix} \item{ADT_subset}{A vector indicates the subset that will be used.} \item{K_knn}{Number of nearest neighbours} \item{K_knn_Aff}{Number of nearest neighbors for computing affinity matrix} \item{sigma}{Variance for local model for computing affinity matrix} \item{t}{Number of iterations for the diffusion process.} \item{metadata_names}{A vector indicates the names of metadata returned} \item{verbose}{whether print out the process} \item{topN}{top highly variable genes are used variable gene selection (see `modelGeneVar` in `scran` package for more details)} } \value{ A SingleCellExperiment object with fused matrix results stored } \description{ A function to runSNF for CITE seq data } \examples{ data("sce_ctcl_subset", package = "CiteFuse") sce_ctcl_subset <- CiteFuse(sce_ctcl_subset) } \references{ B Wang, A Mezlini, F Demir, M Fiume, T Zu, M Brudno, B Haibe-Kains, A Goldenberg (2014) Similarity Network Fusion: a fast and effective method to aggregate multiple data types on a genome wide scale. Nature Methods. Online. Jan 26, 2014 }