... | ... |
@@ -257,13 +257,15 @@ TCGAanalyze_Preprocessing <- function( |
257 | 257 |
#' |
258 | 258 |
#' # If the groups are not specified group1 == group2 and all samples are used |
259 | 259 |
#' \dontrun{ |
260 |
-#' tabSurvKM <- TCGAanalyze_SurvivalKM(clinical_patient_Cancer, |
|
261 |
-#' dataBRCAcomplete, |
|
262 |
-#' Genelist = rownames(dataBRCAcomplete), |
|
263 |
-#' Survresult = TRUE, |
|
264 |
-#' p.cut = 0.2, |
|
265 |
-#' ThreshTop = 0.67, |
|
266 |
-#' ThreshDown = 0.33) |
|
260 |
+#' tabSurvKM <- TCGAanalyze_SurvivalKM( |
|
261 |
+#' clinical_patient_Cancer, |
|
262 |
+#' dataBRCAcomplete, |
|
263 |
+#' Genelist = rownames(dataBRCAcomplete), |
|
264 |
+#' Survresult = TRUE, |
|
265 |
+#' p.cut = 0.2, |
|
266 |
+#' ThreshTop = 0.67, |
|
267 |
+#' ThreshDown = 0.33 |
|
268 |
+#' ) |
|
267 | 269 |
#' } |
268 | 270 |
TCGAanalyze_SurvivalKM <- function( |
269 | 271 |
clinical_patient, |
... | ... |
@@ -359,9 +361,9 @@ TCGAanalyze_SurvivalKM <- function( |
359 | 361 |
samples_down_mRNA_selected <- names(mRNAselected_values_ordered[firstelementDOWN:numberOfSamples]) |
360 | 362 |
|
361 | 363 |
# Which samples are in the intermediate group (above ThreshLow and below ThreshTop) |
362 |
- samples_UNCHANGED_mRNA_selected <- names(mRNAselected_values_newvector[which((mRNAselected_values_newvector) > mRNAselected_values_ordered_down & |
|
363 |
- mRNAselected_values_newvector < mRNAselected_values_ordered_top |
|
364 |
- )]) |
|
364 |
+ samples_UNCHANGED_mRNA_selected <- names(mRNAselected_values_newvector[ |
|
365 |
+ which((mRNAselected_values_newvector) > mRNAselected_values_ordered_down & mRNAselected_values_newvector < mRNAselected_values_ordered_top |
|
366 |
+ )]) |
|
365 | 367 |
|
366 | 368 |
cfu_onlyTOP <- cfu_complete[cfu_complete[, "bcr_patient_barcode"] %in% samples_top_mRNA_selected, ] |
367 | 369 |
cfu_onlyDOWN <- cfu_complete[cfu_complete[, "bcr_patient_barcode"] %in% samples_down_mRNA_selected, ] |
... | ... |
@@ -1417,9 +1419,13 @@ TCGAanalyze_EAcomplete <- function(TFname, RegulonList) { |
1417 | 1419 |
#' \dontrun{ |
1418 | 1420 |
#' EAGenes <- get("EAGenes") |
1419 | 1421 |
#' RegulonList <- rownames(dataDEGsFiltLevel) |
1420 |
-#' ResBP <- TCGAanalyze_EA(GeneName="DEA genes Normal Vs Tumor", |
|
1421 |
-#' RegulonList,DAVID_BP_matrix, |
|
1422 |
-#' EAGenes,GOtype = "DavidBP") |
|
1422 |
+#' ResBP <- TCGAanalyze_EA( |
|
1423 |
+#' GeneName="DEA genes Normal Vs Tumor", |
|
1424 |
+#' RegulonList = RegulonList, |
|
1425 |
+#' TableEnrichment = DAVID_BP_matrix, |
|
1426 |
+#' EAGenes = EAGenes, |
|
1427 |
+#' GOtype = "DavidBP" |
|
1428 |
+#' ) |
|
1423 | 1429 |
#'} |
1424 | 1430 |
TCGAanalyze_EA <- function ( |
1425 | 1431 |
GeneName, |
... | ... |
@@ -1833,9 +1839,9 @@ gaiaCNVplot <- function (calls, threshold = 0.01) { |
1833 | 1839 |
rownames(Calls) <- NULL |
1834 | 1840 |
Chromo <- Calls[, grep("chr", colnames(calls), ignore.case = TRUE)] |
1835 | 1841 |
Gains <- apply(Calls, 1, function(x) |
1836 |
- ifelse(x[grep("aberration", colnames(calls), ignore.case = TRUE)] == 1, x["score"], 0)) |
|
1842 |
+ ifelse(x[grep("aberration", colnames(calls), ignore.case = TRUE)] == 1, x["score"], 0)) |
|
1837 | 1843 |
Losses <- apply(Calls, 1, function(x) |
1838 |
- ifelse(x[grep("aberration", colnames(calls), ignore.case = TRUE)] == 0, x["score"], 0)) |
|
1844 |
+ ifelse(x[grep("aberration", colnames(calls), ignore.case = TRUE)] == 0, x["score"], 0)) |
|
1839 | 1845 |
plot( |
1840 | 1846 |
Gains, |
1841 | 1847 |
ylim = c(-max(Calls[, "score"] + 2), max(Calls[, "score"] + 2)), |
... | ... |
@@ -414,6 +414,7 @@ GDCquery_clinic <- function( |
414 | 414 |
#' clinical.drug <- GDCprepare_clinic(query,"drug") |
415 | 415 |
#' clinical.radiation <- GDCprepare_clinic(query,"radiation") |
416 | 416 |
#' clinical.admin <- GDCprepare_clinic(query,"admin") |
417 |
+#' \dontrun{ |
|
417 | 418 |
#' query <- GDCquery( |
418 | 419 |
#' project = "TCGA-COAD", |
419 | 420 |
#' data.category = "Biospecimen", |
... | ... |
@@ -426,6 +427,7 @@ GDCquery_clinic <- function( |
426 | 427 |
#' clinical.drug <- GDCprepare_clinic(query,"sample") |
427 | 428 |
#' clinical.radiation <- GDCprepare_clinic(query,"portion") |
428 | 429 |
#' clinical.admin <- GDCprepare_clinic(query,"slide") |
430 |
+#' } |
|
429 | 431 |
GDCprepare_clinic <- function( |
430 | 432 |
query, |
431 | 433 |
clinical.info, |
... | ... |
@@ -16,11 +16,13 @@ |
16 | 16 |
#' @importFrom methods is |
17 | 17 |
#' @export |
18 | 18 |
#' @examples |
19 |
-#' query <- GDCquery(project = "TCGA-ACC", |
|
20 |
-#' data.category = "Copy number variation", |
|
21 |
-#' legacy = TRUE, |
|
22 |
-#' file.type = "hg19.seg", |
|
23 |
-#' barcode = c("TCGA-OR-A5LR-01A-11D-A29H-01", "TCGA-OR-A5LJ-10A-01D-A29K-01")) |
|
19 |
+#' query <- GDCquery( |
|
20 |
+#' project = "TCGA-ACC", |
|
21 |
+#' data.category = "Copy number variation", |
|
22 |
+#' legacy = TRUE, |
|
23 |
+#' file.type = "hg19.seg", |
|
24 |
+#' barcode = c("TCGA-OR-A5LR-01A-11D-A29H-01", "TCGA-OR-A5LJ-10A-01D-A29K-01") |
|
25 |
+#' ) |
|
24 | 26 |
#' # data will be saved in GDCdata/TCGA-ACC/legacy/Copy_number_variation/Copy_number_segmentation |
25 | 27 |
#' GDCdownload(query, method = "api") |
26 | 28 |
#' \dontrun{ |
... | ... |
@@ -472,7 +472,7 @@ GDCquery <- function( |
472 | 472 |
is_ffpe = ifelse("is_ffpe" %in% colnames(x),any(is_ffpe),NA), |
473 | 473 |
sample_type = paste(sample_type,collapse = ";"), |
474 | 474 |
aliquot.submiter.id = paste(unlist(rbindlist(x$samples))[grep("portions.analytes.aliquots.submitter_id",names(unlist(rbindlist(x$samples))))],collapse = ";") |
475 |
- ) |
|
475 |
+ ) |
|
476 | 476 |
}) %>% as.data.frame |
477 | 477 |
} else { |
478 | 478 |
aux <- plyr::laply(results$cases, |
... | ... |
@@ -719,12 +719,17 @@ getGDCquery <- function(project, data.category, data.type, legacy, workflow.type |
719 | 719 |
|
720 | 720 |
# Close json request |
721 | 721 |
options.filter <- paste0(options.filter, URLencode(']}')) |
722 |
- url <- paste0(baseURL,paste(options.pretty, |
|
723 |
- options.expand, |
|
724 |
- option.size, |
|
725 |
- options.filter, |
|
726 |
- option.format, |
|
727 |
- sep = "&")) |
|
722 |
+ url <- paste0( |
|
723 |
+ baseURL, |
|
724 |
+ paste( |
|
725 |
+ options.pretty, |
|
726 |
+ options.expand, |
|
727 |
+ option.size, |
|
728 |
+ options.filter, |
|
729 |
+ option.format, |
|
730 |
+ sep = "&" |
|
731 |
+ ) |
|
732 |
+ ) |
|
728 | 733 |
return(url) |
729 | 734 |
} |
730 | 735 |
|
... | ... |
@@ -741,11 +746,13 @@ addFilter <- function(field, values){ |
741 | 746 |
|
742 | 747 |
expandBarcodeInfo <- function(barcode){ |
743 | 748 |
if(any(grepl("TARGET",barcode))) { |
744 |
- ret <- DataFrame(barcode = barcode, |
|
745 |
- code = substr(barcode, 8, 9), |
|
746 |
- case.unique.id = substr(barcode, 11, 16), |
|
747 |
- tissue.code = substr(barcode, 18, 19), |
|
748 |
- nucleic.acid.code = substr(barcode, 24, 24)) |
|
749 |
+ ret <- DataFrame( |
|
750 |
+ barcode = barcode, |
|
751 |
+ code = substr(barcode, 8, 9), |
|
752 |
+ case.unique.id = substr(barcode, 11, 16), |
|
753 |
+ tissue.code = substr(barcode, 18, 19), |
|
754 |
+ nucleic.acid.code = substr(barcode, 24, 24) |
|
755 |
+ ) |
|
749 | 756 |
ret <- merge(ret,getBarcodeDefinition(), by = "tissue.code", sort = FALSE, all.x = TRUE) |
750 | 757 |
ret <- ret[match(barcode,ret$barcode),] |
751 | 758 |
} |
... | ... |
@@ -763,62 +770,72 @@ expandBarcodeInfo <- function(barcode){ |
763 | 770 |
|
764 | 771 |
getBarcodeDefinition <- function(type = "TCGA"){ |
765 | 772 |
if(type == "TCGA"){ |
766 |
- tissue.code <- c('01','02','03','04','05','06','07','08','09','10','11', |
|
767 |
- '12','13','14','20','40','50','60','61') |
|
768 |
- shortLetterCode <- c("TP","TR","TB","TRBM","TAP","TM","TAM","THOC", |
|
769 |
- "TBM","NB","NT","NBC","NEBV","NBM","CELLC","TRB", |
|
770 |
- "CELL","XP","XCL") |
|
771 |
- |
|
772 |
- tissue.definition <- c("Primary Tumor", |
|
773 |
- "Recurrent Tumor", |
|
774 |
- "Primary Blood Derived Cancer - Peripheral Blood", |
|
775 |
- "Recurrent Blood Derived Cancer - Bone Marrow", |
|
776 |
- "Additional - New Primary", |
|
777 |
- "Metastatic", |
|
778 |
- "Additional Metastatic", |
|
779 |
- "Human Tumor Original Cells", |
|
780 |
- "Primary Blood Derived Cancer - Bone Marrow", |
|
781 |
- "Blood Derived Normal", |
|
782 |
- "Solid Tissue Normal", |
|
783 |
- "Buccal Cell Normal", |
|
784 |
- "EBV Immortalized Normal", |
|
785 |
- "Bone Marrow Normal", |
|
786 |
- "Control Analyte", |
|
787 |
- "Recurrent Blood Derived Cancer - Peripheral Blood", |
|
788 |
- "Cell Lines", |
|
789 |
- "Primary Xenograft Tissue", |
|
790 |
- "Cell Line Derived Xenograft Tissue") |
|
773 |
+ tissue.code <- c( |
|
774 |
+ '01','02','03','04','05','06','07','08','09','10','11', |
|
775 |
+ '12','13','14','20','40','50','60','61' |
|
776 |
+ ) |
|
777 |
+ shortLetterCode <- c( |
|
778 |
+ "TP","TR","TB","TRBM","TAP","TM","TAM","THOC", |
|
779 |
+ "TBM","NB","NT","NBC","NEBV","NBM","CELLC","TRB", |
|
780 |
+ "CELL","XP","XCL" |
|
781 |
+ ) |
|
782 |
+ |
|
783 |
+ tissue.definition <- c( |
|
784 |
+ "Primary Tumor", |
|
785 |
+ "Recurrent Tumor", |
|
786 |
+ "Primary Blood Derived Cancer - Peripheral Blood", |
|
787 |
+ "Recurrent Blood Derived Cancer - Bone Marrow", |
|
788 |
+ "Additional - New Primary", |
|
789 |
+ "Metastatic", |
|
790 |
+ "Additional Metastatic", |
|
791 |
+ "Human Tumor Original Cells", |
|
792 |
+ "Primary Blood Derived Cancer - Bone Marrow", |
|
793 |
+ "Blood Derived Normal", |
|
794 |
+ "Solid Tissue Normal", |
|
795 |
+ "Buccal Cell Normal", |
|
796 |
+ "EBV Immortalized Normal", |
|
797 |
+ "Bone Marrow Normal", |
|
798 |
+ "Control Analyte", |
|
799 |
+ "Recurrent Blood Derived Cancer - Peripheral Blood", |
|
800 |
+ "Cell Lines", |
|
801 |
+ "Primary Xenograft Tissue", |
|
802 |
+ "Cell Line Derived Xenograft Tissue") |
|
791 | 803 |
aux <- data.frame(tissue.code = tissue.code,shortLetterCode,tissue.definition) |
792 | 804 |
} else { |
793 |
- tissue.code <- c('01','02','03','04','05','06','07','08','09','10','11', |
|
794 |
- '12','13','14','15','16','17','20','40','41','42','50','60','61','99') |
|
795 |
- |
|
796 |
- tissue.definition <- c("Primary Tumor", # 01 |
|
797 |
- "Recurrent Tumor", # 02 |
|
798 |
- "Primary Blood Derived Cancer - Peripheral Blood", # 03 |
|
799 |
- "Recurrent Blood Derived Cancer - Bone Marrow", # 04 |
|
800 |
- "Additional - New Primary", # 05 |
|
801 |
- "Metastatic", # 06 |
|
802 |
- "Additional Metastatic", # 07 |
|
803 |
- "Tissue disease-specific post-adjuvant therapy", # 08 |
|
804 |
- "Primary Blood Derived Cancer - Bone Marrow", # 09 |
|
805 |
- "Blood Derived Normal", # 10 |
|
806 |
- "Solid Tissue Normal", # 11 |
|
807 |
- "Buccal Cell Normal", # 12 |
|
808 |
- "EBV Immortalized Normal", # 13 |
|
809 |
- "Bone Marrow Normal", # 14 |
|
810 |
- "Fibroblasts from Bone Marrow Normal", # 15 |
|
811 |
- "Mononuclear Cells from Bone Marrow Normal", # 16 |
|
812 |
- "Lymphatic Tissue Normal (including centroblasts)", # 17 |
|
813 |
- "Control Analyte", # 20 |
|
814 |
- "Recurrent Blood Derived Cancer - Peripheral Blood", # 40 |
|
815 |
- "Blood Derived Cancer- Bone Marrow, Post-treatment", # 41 |
|
816 |
- "Blood Derived Cancer- Peripheral Blood, Post-treatment", # 42 |
|
817 |
- "Cell line from patient tumor", # 50 |
|
818 |
- "Xenograft from patient not grown as intermediate on plastic tissue culture dish", # 60 |
|
819 |
- "Xenograft grown in mice from established cell lines", #61 |
|
820 |
- "Granulocytes after a Ficoll separation") # 99 |
|
821 |
- aux <- DataFrame(tissue.code = tissue.code,tissue.definition) |
|
805 |
+ |
|
806 |
+ tissue.code <- c( |
|
807 |
+ '01','02','03','04','05','06','07','08','09','10','11', |
|
808 |
+ '12','13','14','15','16','17','20','40','41','42','50','60','61','99' |
|
809 |
+ ) |
|
810 |
+ |
|
811 |
+ tissue.definition <- c( |
|
812 |
+ "Primary Tumor", # 01 |
|
813 |
+ "Recurrent Tumor", # 02 |
|
814 |
+ "Primary Blood Derived Cancer - Peripheral Blood", # 03 |
|
815 |
+ "Recurrent Blood Derived Cancer - Bone Marrow", # 04 |
|
816 |
+ "Additional - New Primary", # 05 |
|
817 |
+ "Metastatic", # 06 |
|
818 |
+ "Additional Metastatic", # 07 |
|
819 |
+ "Tissue disease-specific post-adjuvant therapy", # 08 |
|
820 |
+ "Primary Blood Derived Cancer - Bone Marrow", # 09 |
|
821 |
+ "Blood Derived Normal", # 10 |
|
822 |
+ "Solid Tissue Normal", # 11 |
|
823 |
+ "Buccal Cell Normal", # 12 |
|
824 |
+ "EBV Immortalized Normal", # 13 |
|
825 |
+ "Bone Marrow Normal", # 14 |
|
826 |
+ "Fibroblasts from Bone Marrow Normal", # 15 |
|
827 |
+ "Mononuclear Cells from Bone Marrow Normal", # 16 |
|
828 |
+ "Lymphatic Tissue Normal (including centroblasts)", # 17 |
|
829 |
+ "Control Analyte", # 20 |
|
830 |
+ "Recurrent Blood Derived Cancer - Peripheral Blood", # 40 |
|
831 |
+ "Blood Derived Cancer- Bone Marrow, Post-treatment", # 41 |
|
832 |
+ "Blood Derived Cancer- Peripheral Blood, Post-treatment", # 42 |
|
833 |
+ "Cell line from patient tumor", # 50 |
|
834 |
+ "Xenograft from patient not grown as intermediate on plastic tissue culture dish", # 60 |
|
835 |
+ "Xenograft grown in mice from established cell lines", #61 |
|
836 |
+ "Granulocytes after a Ficoll separation" |
|
837 |
+ ) # 99 |
|
838 |
+ aux <- DataFrame(tissue.code = tissue.code, tissue.definition) |
|
822 | 839 |
|
823 | 840 |
} |
824 | 841 |
return(aux) |
... | ... |
@@ -945,8 +962,8 @@ TCGAquery_recount2<-function(project, tissue=c()){ |
945 | 962 |
tissue<-unlist(lapply(strsplit(tissue, " "), function(x) paste(x, collapse = "_"))) |
946 | 963 |
Res<-list() |
947 | 964 |
|
948 |
- if(tolower(project)=="gtex"){ |
|
949 |
- for(t_i in tissue){ |
|
965 |
+ if (tolower(project) == "gtex"){ |
|
966 |
+ for (t_i in tissue){ |
|
950 | 967 |
if(t_i%in%tissuesGTEx){ |
951 | 968 |
con<-"http://duffel.rail.bio/recount/v2/SRP012682/rse_gene_" |
952 | 969 |
con<-paste0(con,t_i,".Rdata") |
... | ... |
@@ -1010,12 +1027,14 @@ GDCquery_ATAC_seq <- function( |
1010 | 1027 |
results$data_type <- "ATAC-seq" |
1011 | 1028 |
results$data_category <- "ATAC-seq" |
1012 | 1029 |
results$project <- "ATAC-seq" |
1013 |
- ret <- data.frame(results=I(list(results)), |
|
1014 |
- tumor = I(list(tumor)), |
|
1015 |
- project = I(list("ATAC-seq")), |
|
1016 |
- data.type = I(list("ATAC-seq")), |
|
1017 |
- data.category = I(list("ATAC-seq")), |
|
1018 |
- legacy = I(list(FALSE))) |
|
1030 |
+ ret <- data.frame( |
|
1031 |
+ results=I(list(results)), |
|
1032 |
+ tumor = I(list(tumor)), |
|
1033 |
+ project = I(list("ATAC-seq")), |
|
1034 |
+ data.type = I(list("ATAC-seq")), |
|
1035 |
+ data.category = I(list("ATAC-seq")), |
|
1036 |
+ legacy = I(list(FALSE)) |
|
1037 |
+ ) |
|
1019 | 1038 |
|
1020 | 1039 |
return(ret) |
1021 | 1040 |
} |
... | ... |
@@ -884,19 +884,23 @@ unlistlabels <- function(lab) { |
884 | 884 |
#' GDCdownload(query) |
885 | 885 |
#' mut <- GDCprepare(query) |
886 | 886 |
#' TCGAvisualize_oncoprint(mut = mut, genes = mut$Hugo_Symbol[1:10], rm.empty.columns = TRUE) |
887 |
-#' TCGAvisualize_oncoprint(mut = mut, genes = mut$Hugo_Symbol[1:10], |
|
888 |
-#' filename = "onco.pdf", |
|
889 |
-#' color=c("background"="#CCCCCC","DEL"="purple","INS"="yellow","SNP"="brown")) |
|
887 |
+#' TCGAvisualize_oncoprint( |
|
888 |
+#' mut = mut, genes = mut$Hugo_Symbol[1:10], |
|
889 |
+#' filename = "onco.pdf", |
|
890 |
+#' color = c("background"="#CCCCCC","DEL"="purple","INS"="yellow","SNP"="brown") |
|
891 |
+#' ) |
|
890 | 892 |
#' clin <- GDCquery_clinic("TCGA-ACC","clinical") |
891 | 893 |
#' clin <- clin[,c("bcr_patient_barcode","disease","gender","tumor_stage","race","vital_status")] |
892 |
-#' TCGAvisualize_oncoprint(mut = mut, genes = mut$Hugo_Symbol[1:20], |
|
893 |
-#' filename = "onco.pdf", |
|
894 |
-#' annotation = clin, |
|
895 |
-#' color=c("background"="#CCCCCC","DEL"="purple","INS"="yellow","SNP"="brown"), |
|
896 |
-#' rows.font.size=10, |
|
897 |
-#' heatmap.legend.side = "right", |
|
898 |
-#' dist.col = 0, |
|
899 |
-#' label.font.size = 10) |
|
894 |
+#' TCGAvisualize_oncoprint( |
|
895 |
+#' mut = mut, genes = mut$Hugo_Symbol[1:20], |
|
896 |
+#' filename = "onco.pdf", |
|
897 |
+#' annotation = clin, |
|
898 |
+#' color=c("background"="#CCCCCC","DEL"="purple","INS"="yellow","SNP"="brown"), |
|
899 |
+#' rows.font.size=10, |
|
900 |
+#' heatmap.legend.side = "right", |
|
901 |
+#' dist.col = 0, |
|
902 |
+#' label.font.size = 10 |
|
903 |
+#' ) |
|
900 | 904 |
#' } |
901 | 905 |
#' @export |
902 | 906 |
#' @return A oncoprint plot |
... | ... |
@@ -1431,6 +1435,7 @@ TCGAvisualize_oncoprint <- function( |
1431 | 1435 |
#' title = "Title example", |
1432 | 1436 |
#' xlab = expression(paste(Log[2], "FoldChange")) |
1433 | 1437 |
#' ) |
1438 |
+#' \dontrun{ |
|
1434 | 1439 |
#' beta_diff <- runif(200, -1, 1) |
1435 | 1440 |
#' fdr <- runif(200, 0.01, 1) |
1436 | 1441 |
#' TCGAVisualize_volcano( |
... | ... |
@@ -1441,7 +1446,6 @@ TCGAvisualize_oncoprint <- function( |
1441 | 1446 |
#' title = "Title example", |
1442 | 1447 |
#' xlab = expression(paste("DNA Methylation difference (", beta, "-values)")) |
1443 | 1448 |
#' ) |
1444 |
-#' \dontrun{ |
|
1445 | 1449 |
#' TCGAVisualize_volcano( |
1446 | 1450 |
#' x, |
1447 | 1451 |
#' y, |
... | ... |
@@ -34,11 +34,13 @@ Uses GDC API or GDC transfer tool to download gdc data |
34 | 34 |
The data from query will be save in a folder: project/data.category |
35 | 35 |
} |
36 | 36 |
\examples{ |
37 |
-query <- GDCquery(project = "TCGA-ACC", |
|
38 |
- data.category = "Copy number variation", |
|
39 |
- legacy = TRUE, |
|
40 |
- file.type = "hg19.seg", |
|
41 |
- barcode = c("TCGA-OR-A5LR-01A-11D-A29H-01", "TCGA-OR-A5LJ-10A-01D-A29K-01")) |
|
37 |
+query <- GDCquery( |
|
38 |
+ project = "TCGA-ACC", |
|
39 |
+ data.category = "Copy number variation", |
|
40 |
+ legacy = TRUE, |
|
41 |
+ file.type = "hg19.seg", |
|
42 |
+ barcode = c("TCGA-OR-A5LR-01A-11D-A29H-01", "TCGA-OR-A5LJ-10A-01D-A29K-01") |
|
43 |
+ ) |
|
42 | 44 |
# data will be saved in GDCdata/TCGA-ACC/legacy/Copy_number_variation/Copy_number_segmentation |
43 | 45 |
GDCdownload(query, method = "api") |
44 | 46 |
\dontrun{ |
... | ... |
@@ -34,6 +34,7 @@ clinical <- GDCprepare_clinic(query,"patient") |
34 | 34 |
clinical.drug <- GDCprepare_clinic(query,"drug") |
35 | 35 |
clinical.radiation <- GDCprepare_clinic(query,"radiation") |
36 | 36 |
clinical.admin <- GDCprepare_clinic(query,"admin") |
37 |
+\dontrun{ |
|
37 | 38 |
query <- GDCquery( |
38 | 39 |
project = "TCGA-COAD", |
39 | 40 |
data.category = "Biospecimen", |
... | ... |
@@ -47,3 +48,4 @@ clinical.drug <- GDCprepare_clinic(query,"sample") |
47 | 48 |
clinical.radiation <- GDCprepare_clinic(query,"portion") |
48 | 49 |
clinical.admin <- GDCprepare_clinic(query,"slide") |
49 | 50 |
} |
51 |
+} |
... | ... |
@@ -103,6 +103,7 @@ TCGAVisualize_volcano( |
103 | 103 |
title = "Title example", |
104 | 104 |
xlab = expression(paste(Log[2], "FoldChange")) |
105 | 105 |
) |
106 |
+\dontrun{ |
|
106 | 107 |
beta_diff <- runif(200, -1, 1) |
107 | 108 |
fdr <- runif(200, 0.01, 1) |
108 | 109 |
TCGAVisualize_volcano( |
... | ... |
@@ -113,7 +114,6 @@ TCGAVisualize_volcano( |
113 | 114 |
title = "Title example", |
114 | 115 |
xlab = expression(paste("DNA Methylation difference (", beta, "-values)")) |
115 | 116 |
) |
116 |
-\dontrun{ |
|
117 | 117 |
TCGAVisualize_volcano( |
118 | 118 |
x, |
119 | 119 |
y, |
... | ... |
@@ -100,18 +100,22 @@ query <- GDCquery( |
100 | 100 |
GDCdownload(query) |
101 | 101 |
mut <- GDCprepare(query) |
102 | 102 |
TCGAvisualize_oncoprint(mut = mut, genes = mut$Hugo_Symbol[1:10], rm.empty.columns = TRUE) |
103 |
-TCGAvisualize_oncoprint(mut = mut, genes = mut$Hugo_Symbol[1:10], |
|
104 |
- filename = "onco.pdf", |
|
105 |
- color=c("background"="#CCCCCC","DEL"="purple","INS"="yellow","SNP"="brown")) |
|
103 |
+TCGAvisualize_oncoprint( |
|
104 |
+ mut = mut, genes = mut$Hugo_Symbol[1:10], |
|
105 |
+ filename = "onco.pdf", |
|
106 |
+ color = c("background"="#CCCCCC","DEL"="purple","INS"="yellow","SNP"="brown") |
|
107 |
+) |
|
106 | 108 |
clin <- GDCquery_clinic("TCGA-ACC","clinical") |
107 | 109 |
clin <- clin[,c("bcr_patient_barcode","disease","gender","tumor_stage","race","vital_status")] |
108 |
-TCGAvisualize_oncoprint(mut = mut, genes = mut$Hugo_Symbol[1:20], |
|
109 |
- filename = "onco.pdf", |
|
110 |
- annotation = clin, |
|
111 |
- color=c("background"="#CCCCCC","DEL"="purple","INS"="yellow","SNP"="brown"), |
|
112 |
- rows.font.size=10, |
|
113 |
- heatmap.legend.side = "right", |
|
114 |
- dist.col = 0, |
|
115 |
- label.font.size = 10) |
|
110 |
+TCGAvisualize_oncoprint( |
|
111 |
+ mut = mut, genes = mut$Hugo_Symbol[1:20], |
|
112 |
+ filename = "onco.pdf", |
|
113 |
+ annotation = clin, |
|
114 |
+ color=c("background"="#CCCCCC","DEL"="purple","INS"="yellow","SNP"="brown"), |
|
115 |
+ rows.font.size=10, |
|
116 |
+ heatmap.legend.side = "right", |
|
117 |
+ dist.col = 0, |
|
118 |
+ label.font.size = 10 |
|
119 |
+) |
|
116 | 120 |
} |
117 | 121 |
} |