Browse code

version bump

Tiago Silva authored on 15/02/2023 22:35:45
Showing 9 changed files

... ...
@@ -257,13 +257,15 @@ TCGAanalyze_Preprocessing <- function(
257 257
 #'
258 258
 #'  # If the groups are not specified group1 == group2 and all samples are used
259 259
 #'  \dontrun{
260
-#'  tabSurvKM <- TCGAanalyze_SurvivalKM(clinical_patient_Cancer,
261
-#'                                      dataBRCAcomplete,
262
-#'                                      Genelist = rownames(dataBRCAcomplete),
263
-#'                                      Survresult = TRUE,
264
-#'                                      p.cut = 0.2,
265
-#'                                      ThreshTop = 0.67,
266
-#'                                      ThreshDown = 0.33)
260
+#'  tabSurvKM <- TCGAanalyze_SurvivalKM(
261
+#'    clinical_patient_Cancer,
262
+#'    dataBRCAcomplete,
263
+#'    Genelist = rownames(dataBRCAcomplete),
264
+#'    Survresult = TRUE,
265
+#'    p.cut = 0.2,
266
+#'     ThreshTop = 0.67,
267
+#'     ThreshDown = 0.33
268
+#'   )
267 269
 #' }
268 270
 TCGAanalyze_SurvivalKM <- function(
269 271
         clinical_patient,
... ...
@@ -359,9 +361,9 @@ TCGAanalyze_SurvivalKM <- function(
359 361
             samples_down_mRNA_selected <- names(mRNAselected_values_ordered[firstelementDOWN:numberOfSamples])
360 362
 
361 363
             # Which samples are in the intermediate group (above ThreshLow and below ThreshTop)
362
-            samples_UNCHANGED_mRNA_selected <- names(mRNAselected_values_newvector[which((mRNAselected_values_newvector) > mRNAselected_values_ordered_down &
363
-                                                                                             mRNAselected_values_newvector < mRNAselected_values_ordered_top
364
-            )])
364
+            samples_UNCHANGED_mRNA_selected <- names(mRNAselected_values_newvector[
365
+                which((mRNAselected_values_newvector) > mRNAselected_values_ordered_down &  mRNAselected_values_newvector < mRNAselected_values_ordered_top
366
+                )])
365 367
 
366 368
             cfu_onlyTOP <- cfu_complete[cfu_complete[, "bcr_patient_barcode"] %in% samples_top_mRNA_selected, ]
367 369
             cfu_onlyDOWN <- cfu_complete[cfu_complete[, "bcr_patient_barcode"] %in% samples_down_mRNA_selected, ]
... ...
@@ -1417,9 +1419,13 @@ TCGAanalyze_EAcomplete <- function(TFname, RegulonList) {
1417 1419
 #' \dontrun{
1418 1420
 #' EAGenes <- get("EAGenes")
1419 1421
 #' RegulonList <- rownames(dataDEGsFiltLevel)
1420
-#' ResBP <- TCGAanalyze_EA(GeneName="DEA genes Normal Vs Tumor",
1421
-#'                            RegulonList,DAVID_BP_matrix,
1422
-#'                            EAGenes,GOtype = "DavidBP")
1422
+#' ResBP <- TCGAanalyze_EA(
1423
+#'   GeneName="DEA genes Normal Vs Tumor",
1424
+#'   RegulonList = RegulonList,
1425
+#'   TableEnrichment = DAVID_BP_matrix,
1426
+#'    EAGenes = EAGenes,
1427
+#'    GOtype = "DavidBP"
1428
+#'  )
1423 1429
 #'}
1424 1430
 TCGAanalyze_EA <- function (
1425 1431
         GeneName,
... ...
@@ -1833,9 +1839,9 @@ gaiaCNVplot <- function (calls,  threshold = 0.01) {
1833 1839
     rownames(Calls) <- NULL
1834 1840
     Chromo <- Calls[, grep("chr", colnames(calls), ignore.case = TRUE)]
1835 1841
     Gains <- apply(Calls, 1, function(x)
1836
-            ifelse(x[grep("aberration", colnames(calls), ignore.case = TRUE)] == 1, x["score"], 0))
1842
+        ifelse(x[grep("aberration", colnames(calls), ignore.case = TRUE)] == 1, x["score"], 0))
1837 1843
     Losses <- apply(Calls, 1, function(x)
1838
-            ifelse(x[grep("aberration", colnames(calls), ignore.case = TRUE)] == 0, x["score"], 0))
1844
+        ifelse(x[grep("aberration", colnames(calls), ignore.case = TRUE)] == 0, x["score"], 0))
1839 1845
     plot(
1840 1846
         Gains,
1841 1847
         ylim = c(-max(Calls[, "score"] + 2), max(Calls[, "score"] + 2)),
... ...
@@ -414,6 +414,7 @@ GDCquery_clinic <- function(
414 414
 #' clinical.drug <- GDCprepare_clinic(query,"drug")
415 415
 #' clinical.radiation <- GDCprepare_clinic(query,"radiation")
416 416
 #' clinical.admin <- GDCprepare_clinic(query,"admin")
417
+#' \dontrun{
417 418
 #' query <- GDCquery(
418 419
 #'    project = "TCGA-COAD",
419 420
 #'    data.category = "Biospecimen",
... ...
@@ -426,6 +427,7 @@ GDCquery_clinic <- function(
426 427
 #' clinical.drug <- GDCprepare_clinic(query,"sample")
427 428
 #' clinical.radiation <- GDCprepare_clinic(query,"portion")
428 429
 #' clinical.admin <- GDCprepare_clinic(query,"slide")
430
+#' }
429 431
 GDCprepare_clinic <- function(
430 432
         query,
431 433
         clinical.info,
... ...
@@ -16,11 +16,13 @@
16 16
 #' @importFrom methods is
17 17
 #' @export
18 18
 #' @examples
19
-#' query <- GDCquery(project = "TCGA-ACC",
20
-#'                  data.category =  "Copy number variation",
21
-#'                  legacy = TRUE,
22
-#'                  file.type = "hg19.seg",
23
-#'                  barcode = c("TCGA-OR-A5LR-01A-11D-A29H-01", "TCGA-OR-A5LJ-10A-01D-A29K-01"))
19
+#' query <- GDCquery(
20
+#'   project = "TCGA-ACC",
21
+#'   data.category =  "Copy number variation",
22
+#'   legacy = TRUE,
23
+#'   file.type = "hg19.seg",
24
+#'   barcode = c("TCGA-OR-A5LR-01A-11D-A29H-01", "TCGA-OR-A5LJ-10A-01D-A29K-01")
25
+#'  )
24 26
 #' # data will be saved in  GDCdata/TCGA-ACC/legacy/Copy_number_variation/Copy_number_segmentation
25 27
 #' GDCdownload(query, method = "api")
26 28
 #' \dontrun{
... ...
@@ -472,7 +472,7 @@ GDCquery <- function(
472 472
                                        is_ffpe = ifelse("is_ffpe" %in% colnames(x),any(is_ffpe),NA),
473 473
                                        sample_type =  paste(sample_type,collapse = ";"),
474 474
                                        aliquot.submiter.id = paste(unlist(rbindlist(x$samples))[grep("portions.analytes.aliquots.submitter_id",names(unlist(rbindlist(x$samples))))],collapse = ";")
475
-                                       )
475
+                                   )
476 476
                                }) %>% as.data.frame
477 477
         } else {
478 478
             aux <- plyr::laply(results$cases,
... ...
@@ -719,12 +719,17 @@ getGDCquery <- function(project, data.category, data.type, legacy, workflow.type
719 719
 
720 720
     # Close json request
721 721
     options.filter <- paste0(options.filter, URLencode(']}'))
722
-    url <- paste0(baseURL,paste(options.pretty,
723
-                                options.expand,
724
-                                option.size,
725
-                                options.filter,
726
-                                option.format,
727
-                                sep = "&"))
722
+    url <- paste0(
723
+        baseURL,
724
+        paste(
725
+            options.pretty,
726
+            options.expand,
727
+            option.size,
728
+            options.filter,
729
+            option.format,
730
+            sep = "&"
731
+        )
732
+    )
728 733
     return(url)
729 734
 }
730 735
 
... ...
@@ -741,11 +746,13 @@ addFilter <- function(field, values){
741 746
 
742 747
 expandBarcodeInfo <- function(barcode){
743 748
     if(any(grepl("TARGET",barcode))) {
744
-        ret <- DataFrame(barcode = barcode,
745
-                         code = substr(barcode, 8, 9),
746
-                         case.unique.id = substr(barcode, 11, 16),
747
-                         tissue.code = substr(barcode, 18, 19),
748
-                         nucleic.acid.code = substr(barcode, 24, 24))
749
+        ret <- DataFrame(
750
+            barcode = barcode,
751
+            code = substr(barcode, 8, 9),
752
+            case.unique.id = substr(barcode, 11, 16),
753
+            tissue.code = substr(barcode, 18, 19),
754
+            nucleic.acid.code = substr(barcode, 24, 24)
755
+        )
749 756
         ret <- merge(ret,getBarcodeDefinition(), by = "tissue.code", sort = FALSE, all.x = TRUE)
750 757
         ret <- ret[match(barcode,ret$barcode),]
751 758
     }
... ...
@@ -763,62 +770,72 @@ expandBarcodeInfo <- function(barcode){
763 770
 
764 771
 getBarcodeDefinition <- function(type = "TCGA"){
765 772
     if(type == "TCGA"){
766
-        tissue.code <- c('01','02','03','04','05','06','07','08','09','10','11',
767
-                         '12','13','14','20','40','50','60','61')
768
-        shortLetterCode <- c("TP","TR","TB","TRBM","TAP","TM","TAM","THOC",
769
-                             "TBM","NB","NT","NBC","NEBV","NBM","CELLC","TRB",
770
-                             "CELL","XP","XCL")
771
-
772
-        tissue.definition <- c("Primary Tumor",
773
-                               "Recurrent Tumor",
774
-                               "Primary Blood Derived Cancer - Peripheral Blood",
775
-                               "Recurrent Blood Derived Cancer - Bone Marrow",
776
-                               "Additional - New Primary",
777
-                               "Metastatic",
778
-                               "Additional Metastatic",
779
-                               "Human Tumor Original Cells",
780
-                               "Primary Blood Derived Cancer - Bone Marrow",
781
-                               "Blood Derived Normal",
782
-                               "Solid Tissue Normal",
783
-                               "Buccal Cell Normal",
784
-                               "EBV Immortalized Normal",
785
-                               "Bone Marrow Normal",
786
-                               "Control Analyte",
787
-                               "Recurrent Blood Derived Cancer - Peripheral Blood",
788
-                               "Cell Lines",
789
-                               "Primary Xenograft Tissue",
790
-                               "Cell Line Derived Xenograft Tissue")
773
+        tissue.code <- c(
774
+            '01','02','03','04','05','06','07','08','09','10','11',
775
+            '12','13','14','20','40','50','60','61'
776
+        )
777
+        shortLetterCode <- c(
778
+            "TP","TR","TB","TRBM","TAP","TM","TAM","THOC",
779
+            "TBM","NB","NT","NBC","NEBV","NBM","CELLC","TRB",
780
+            "CELL","XP","XCL"
781
+        )
782
+
783
+        tissue.definition <- c(
784
+            "Primary Tumor",
785
+            "Recurrent Tumor",
786
+            "Primary Blood Derived Cancer - Peripheral Blood",
787
+            "Recurrent Blood Derived Cancer - Bone Marrow",
788
+            "Additional - New Primary",
789
+            "Metastatic",
790
+            "Additional Metastatic",
791
+            "Human Tumor Original Cells",
792
+            "Primary Blood Derived Cancer - Bone Marrow",
793
+            "Blood Derived Normal",
794
+            "Solid Tissue Normal",
795
+            "Buccal Cell Normal",
796
+            "EBV Immortalized Normal",
797
+            "Bone Marrow Normal",
798
+            "Control Analyte",
799
+            "Recurrent Blood Derived Cancer - Peripheral Blood",
800
+            "Cell Lines",
801
+            "Primary Xenograft Tissue",
802
+            "Cell Line Derived Xenograft Tissue")
791 803
         aux <- data.frame(tissue.code = tissue.code,shortLetterCode,tissue.definition)
792 804
     } else {
793
-        tissue.code <- c('01','02','03','04','05','06','07','08','09','10','11',
794
-                         '12','13','14','15','16','17','20','40','41','42','50','60','61','99')
795
-
796
-        tissue.definition <- c("Primary Tumor", # 01
797
-                               "Recurrent Tumor", # 02
798
-                               "Primary Blood Derived Cancer - Peripheral Blood", # 03
799
-                               "Recurrent Blood Derived Cancer - Bone Marrow", # 04
800
-                               "Additional - New Primary", # 05
801
-                               "Metastatic", # 06
802
-                               "Additional Metastatic", # 07
803
-                               "Tissue disease-specific post-adjuvant therapy", # 08
804
-                               "Primary Blood Derived Cancer - Bone Marrow", # 09
805
-                               "Blood Derived Normal", # 10
806
-                               "Solid Tissue Normal",  # 11
807
-                               "Buccal Cell Normal",   # 12
808
-                               "EBV Immortalized Normal", # 13
809
-                               "Bone Marrow Normal", # 14
810
-                               "Fibroblasts from Bone Marrow Normal", # 15
811
-                               "Mononuclear Cells from Bone Marrow Normal", # 16
812
-                               "Lymphatic Tissue Normal (including centroblasts)", # 17
813
-                               "Control Analyte", # 20
814
-                               "Recurrent Blood Derived Cancer - Peripheral Blood", # 40
815
-                               "Blood Derived Cancer- Bone Marrow, Post-treatment", # 41
816
-                               "Blood Derived Cancer- Peripheral Blood, Post-treatment", # 42
817
-                               "Cell line from patient tumor", # 50
818
-                               "Xenograft from patient not grown as intermediate on plastic tissue culture dish", # 60
819
-                               "Xenograft grown in mice from established cell lines", #61
820
-                               "Granulocytes after a Ficoll separation") # 99
821
-        aux <- DataFrame(tissue.code = tissue.code,tissue.definition)
805
+
806
+        tissue.code <- c(
807
+            '01','02','03','04','05','06','07','08','09','10','11',
808
+            '12','13','14','15','16','17','20','40','41','42','50','60','61','99'
809
+        )
810
+
811
+        tissue.definition <- c(
812
+            "Primary Tumor", # 01
813
+            "Recurrent Tumor", # 02
814
+            "Primary Blood Derived Cancer - Peripheral Blood", # 03
815
+            "Recurrent Blood Derived Cancer - Bone Marrow", # 04
816
+            "Additional - New Primary", # 05
817
+            "Metastatic", # 06
818
+            "Additional Metastatic", # 07
819
+            "Tissue disease-specific post-adjuvant therapy", # 08
820
+            "Primary Blood Derived Cancer - Bone Marrow", # 09
821
+            "Blood Derived Normal", # 10
822
+            "Solid Tissue Normal",  # 11
823
+            "Buccal Cell Normal",   # 12
824
+            "EBV Immortalized Normal", # 13
825
+            "Bone Marrow Normal", # 14
826
+            "Fibroblasts from Bone Marrow Normal", # 15
827
+            "Mononuclear Cells from Bone Marrow Normal", # 16
828
+            "Lymphatic Tissue Normal (including centroblasts)", # 17
829
+            "Control Analyte", # 20
830
+            "Recurrent Blood Derived Cancer - Peripheral Blood", # 40
831
+            "Blood Derived Cancer- Bone Marrow, Post-treatment", # 41
832
+            "Blood Derived Cancer- Peripheral Blood, Post-treatment", # 42
833
+            "Cell line from patient tumor", # 50
834
+            "Xenograft from patient not grown as intermediate on plastic tissue culture dish", # 60
835
+            "Xenograft grown in mice from established cell lines", #61
836
+            "Granulocytes after a Ficoll separation"
837
+        ) # 99
838
+        aux <- DataFrame(tissue.code = tissue.code, tissue.definition)
822 839
 
823 840
     }
824 841
     return(aux)
... ...
@@ -945,8 +962,8 @@ TCGAquery_recount2<-function(project, tissue=c()){
945 962
     tissue<-unlist(lapply(strsplit(tissue, " "), function(x) paste(x, collapse = "_")))
946 963
     Res<-list()
947 964
 
948
-    if(tolower(project)=="gtex"){
949
-        for(t_i in tissue){
965
+    if (tolower(project) == "gtex"){
966
+        for (t_i in tissue){
950 967
             if(t_i%in%tissuesGTEx){
951 968
                 con<-"http://duffel.rail.bio/recount/v2/SRP012682/rse_gene_"
952 969
                 con<-paste0(con,t_i,".Rdata")
... ...
@@ -1010,12 +1027,14 @@ GDCquery_ATAC_seq <- function(
1010 1027
     results$data_type <- "ATAC-seq"
1011 1028
     results$data_category <- "ATAC-seq"
1012 1029
     results$project <- "ATAC-seq"
1013
-    ret <- data.frame(results=I(list(results)),
1014
-                      tumor = I(list(tumor)),
1015
-                      project = I(list("ATAC-seq")),
1016
-                      data.type = I(list("ATAC-seq")),
1017
-                      data.category = I(list("ATAC-seq")),
1018
-                      legacy = I(list(FALSE)))
1030
+    ret <- data.frame(
1031
+        results=I(list(results)),
1032
+        tumor = I(list(tumor)),
1033
+        project = I(list("ATAC-seq")),
1034
+        data.type = I(list("ATAC-seq")),
1035
+        data.category = I(list("ATAC-seq")),
1036
+        legacy = I(list(FALSE))
1037
+    )
1019 1038
 
1020 1039
     return(ret)
1021 1040
 }
... ...
@@ -884,19 +884,23 @@ unlistlabels <- function(lab) {
884 884
 #' GDCdownload(query)
885 885
 #' mut <- GDCprepare(query)
886 886
 #' TCGAvisualize_oncoprint(mut = mut, genes = mut$Hugo_Symbol[1:10], rm.empty.columns = TRUE)
887
-#' TCGAvisualize_oncoprint(mut = mut, genes = mut$Hugo_Symbol[1:10],
888
-#'                  filename = "onco.pdf",
889
-#'                  color=c("background"="#CCCCCC","DEL"="purple","INS"="yellow","SNP"="brown"))
887
+#' TCGAvisualize_oncoprint(
888
+#'   mut = mut, genes = mut$Hugo_Symbol[1:10],
889
+#'   filename = "onco.pdf",
890
+#'   color = c("background"="#CCCCCC","DEL"="purple","INS"="yellow","SNP"="brown")
891
+#' )
890 892
 #' clin <- GDCquery_clinic("TCGA-ACC","clinical")
891 893
 #' clin <- clin[,c("bcr_patient_barcode","disease","gender","tumor_stage","race","vital_status")]
892
-#' TCGAvisualize_oncoprint(mut = mut, genes = mut$Hugo_Symbol[1:20],
893
-#'                 filename = "onco.pdf",
894
-#'                 annotation = clin,
895
-#'                 color=c("background"="#CCCCCC","DEL"="purple","INS"="yellow","SNP"="brown"),
896
-#'                 rows.font.size=10,
897
-#'                 heatmap.legend.side = "right",
898
-#'                 dist.col = 0,
899
-#'                 label.font.size = 10)
894
+#' TCGAvisualize_oncoprint(
895
+#'    mut = mut, genes = mut$Hugo_Symbol[1:20],
896
+#'    filename = "onco.pdf",
897
+#'    annotation = clin,
898
+#'    color=c("background"="#CCCCCC","DEL"="purple","INS"="yellow","SNP"="brown"),
899
+#'    rows.font.size=10,
900
+#'    heatmap.legend.side = "right",
901
+#'    dist.col = 0,
902
+#'    label.font.size = 10
903
+#' )
900 904
 #' }
901 905
 #' @export
902 906
 #' @return A oncoprint plot
... ...
@@ -1431,6 +1435,7 @@ TCGAvisualize_oncoprint <- function(
1431 1435
 #'     title = "Title example",
1432 1436
 #'     xlab = expression(paste(Log[2], "FoldChange"))
1433 1437
 #' )
1438
+#' \dontrun{
1434 1439
 #' beta_diff <- runif(200, -1, 1)
1435 1440
 #' fdr <- runif(200, 0.01, 1)
1436 1441
 #' TCGAVisualize_volcano(
... ...
@@ -1441,7 +1446,6 @@ TCGAvisualize_oncoprint <- function(
1441 1446
 #'     title = "Title example",
1442 1447
 #'     xlab = expression(paste("DNA Methylation difference (", beta, "-values)"))
1443 1448
 #' )
1444
-#' \dontrun{
1445 1449
 #' TCGAVisualize_volcano(
1446 1450
 #'   x,
1447 1451
 #'   y,
... ...
@@ -34,11 +34,13 @@ Uses GDC API or GDC transfer tool to download gdc data
34 34
   The data from query will be save in a folder: project/data.category
35 35
 }
36 36
 \examples{
37
-query <- GDCquery(project = "TCGA-ACC",
38
-                 data.category =  "Copy number variation",
39
-                 legacy = TRUE,
40
-                 file.type = "hg19.seg",
41
-                 barcode = c("TCGA-OR-A5LR-01A-11D-A29H-01", "TCGA-OR-A5LJ-10A-01D-A29K-01"))
37
+query <- GDCquery(
38
+  project = "TCGA-ACC",
39
+  data.category =  "Copy number variation",
40
+  legacy = TRUE,
41
+  file.type = "hg19.seg",
42
+  barcode = c("TCGA-OR-A5LR-01A-11D-A29H-01", "TCGA-OR-A5LJ-10A-01D-A29K-01")
43
+ )
42 44
 # data will be saved in  GDCdata/TCGA-ACC/legacy/Copy_number_variation/Copy_number_segmentation
43 45
 GDCdownload(query, method = "api")
44 46
 \dontrun{
... ...
@@ -34,6 +34,7 @@ clinical <- GDCprepare_clinic(query,"patient")
34 34
 clinical.drug <- GDCprepare_clinic(query,"drug")
35 35
 clinical.radiation <- GDCprepare_clinic(query,"radiation")
36 36
 clinical.admin <- GDCprepare_clinic(query,"admin")
37
+\dontrun{
37 38
 query <- GDCquery(
38 39
    project = "TCGA-COAD",
39 40
    data.category = "Biospecimen",
... ...
@@ -47,3 +48,4 @@ clinical.drug <- GDCprepare_clinic(query,"sample")
47 48
 clinical.radiation <- GDCprepare_clinic(query,"portion")
48 49
 clinical.admin <- GDCprepare_clinic(query,"slide")
49 50
 }
51
+}
... ...
@@ -103,6 +103,7 @@ TCGAVisualize_volcano(
103 103
     title = "Title example",
104 104
     xlab = expression(paste(Log[2], "FoldChange"))
105 105
 )
106
+\dontrun{
106 107
 beta_diff <- runif(200, -1, 1)
107 108
 fdr <- runif(200, 0.01, 1)
108 109
 TCGAVisualize_volcano(
... ...
@@ -113,7 +114,6 @@ TCGAVisualize_volcano(
113 114
     title = "Title example",
114 115
     xlab = expression(paste("DNA Methylation difference (", beta, "-values)"))
115 116
 )
116
-\dontrun{
117 117
 TCGAVisualize_volcano(
118 118
   x,
119 119
   y,
... ...
@@ -100,18 +100,22 @@ query <- GDCquery(
100 100
 GDCdownload(query)
101 101
 mut <- GDCprepare(query)
102 102
 TCGAvisualize_oncoprint(mut = mut, genes = mut$Hugo_Symbol[1:10], rm.empty.columns = TRUE)
103
-TCGAvisualize_oncoprint(mut = mut, genes = mut$Hugo_Symbol[1:10],
104
-                 filename = "onco.pdf",
105
-                 color=c("background"="#CCCCCC","DEL"="purple","INS"="yellow","SNP"="brown"))
103
+TCGAvisualize_oncoprint(
104
+  mut = mut, genes = mut$Hugo_Symbol[1:10],
105
+  filename = "onco.pdf",
106
+  color = c("background"="#CCCCCC","DEL"="purple","INS"="yellow","SNP"="brown")
107
+)
106 108
 clin <- GDCquery_clinic("TCGA-ACC","clinical")
107 109
 clin <- clin[,c("bcr_patient_barcode","disease","gender","tumor_stage","race","vital_status")]
108
-TCGAvisualize_oncoprint(mut = mut, genes = mut$Hugo_Symbol[1:20],
109
-                filename = "onco.pdf",
110
-                annotation = clin,
111
-                color=c("background"="#CCCCCC","DEL"="purple","INS"="yellow","SNP"="brown"),
112
-                rows.font.size=10,
113
-                heatmap.legend.side = "right",
114
-                dist.col = 0,
115
-                label.font.size = 10)
110
+TCGAvisualize_oncoprint(
111
+   mut = mut, genes = mut$Hugo_Symbol[1:20],
112
+   filename = "onco.pdf",
113
+   annotation = clin,
114
+   color=c("background"="#CCCCCC","DEL"="purple","INS"="yellow","SNP"="brown"),
115
+   rows.font.size=10,
116
+   heatmap.legend.side = "right",
117
+   dist.col = 0,
118
+   label.font.size = 10
119
+)
116 120
 }
117 121
 }