Former-commit-id: 15b04648840b4ce6df519c95ace4dbffbda91457 [formerly ebf16d294ef13861db713f06b471291e9a7fff49]
Former-commit-id: b1ab93dfce95dbc34944d854921bb077732ac420
... | ... |
@@ -24,8 +24,10 @@ library(DT) |
24 | 24 |
<br> |
25 | 25 |
|
26 | 26 |
## Classifying gliomas samples with `gliomaClassifier` |
27 |
+<hr> |
|
28 |
+ |
|
29 |
+Classifying glioma samples with DNA methylation array based on: |
|
27 | 30 |
|
28 |
-Classify glioma samples with DNA methylation array based on: |
|
29 | 31 |
|
30 | 32 |
**Ceccarelli, Michele, et al. "Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma." Cell 164.3 (2016): 550-563.** (https://doi.org/10.1016/j.cell.2015.12.028) |
31 | 33 |
|
... | ... |
@@ -38,7 +40,8 @@ Possible classifications are: |
38 | 40 |
- LGm6-GBM |
39 | 41 |
- Codel |
40 | 42 |
|
41 |
-### Data |
|
43 |
+## Data |
|
44 |
+<hr> |
|
42 | 45 |
|
43 | 46 |
The input data can be either a Summarized Experiment object of a matrix |
44 | 47 |
(samples as columns, probes as rows) from the following platforms: |
... | ... |
@@ -64,13 +67,15 @@ data.hg19 <- GDCprepare(query) |
64 | 67 |
assay(data.hg19)[1:5,1:2] |
65 | 68 |
``` |
66 | 69 |
|
67 |
-### Function |
|
70 |
+## Function |
|
71 |
+<hr> |
|
72 |
+ |
|
68 | 73 |
```{r, eval = TRUE} |
69 | 74 |
classification <- gliomaClassifier(data.hg19) |
70 | 75 |
``` |
71 | 76 |
|
72 |
-### Results |
|
73 |
- |
|
77 |
+## Results |
|
78 |
+<hr> |
|
74 | 79 |
The classfier will return a list of 3 data frames: |
75 | 80 |
|
76 | 81 |
1. Sample final classification |
... | ... |
@@ -84,7 +89,8 @@ classification$model.classifications |
84 | 89 |
classification$model.probabilities |
85 | 90 |
``` |
86 | 91 |
|
87 |
-### Comparing results with paper |
|
92 |
+## Comparing results with paper |
|
93 |
+<hr> |
|
88 | 94 |
```{R} |
89 | 95 |
TCGAquery_subtype("GBM") %>% |
90 | 96 |
dplyr::filter(patient %in% c("TCGA-06-0122","TCGA-14-1456")) %>% |