... | ... |
@@ -1,6 +1,6 @@ |
1 | 1 |
Package: crisprScore |
2 |
-Version: 1.3.1 |
|
3 |
-Date: 2022-10-17 |
|
2 |
+Version: 1.3.2 |
|
3 |
+Date: 2023-04-03 |
|
4 | 4 |
Title: On-Target and Off-Target Scoring Algorithms for CRISPR gRNAs |
5 | 5 |
Authors@R: c( |
6 | 6 |
person("Jean-Philippe", "Fortin", email = "[email protected]", role = c("aut", "cre", "cph")), |
... | ... |
@@ -98,7 +98,7 @@ getMITScores <- function(spacers, |
98 | 98 |
} else { |
99 | 99 |
d <- (max(indices)-min(indices))/(m-1) |
100 | 100 |
} |
101 |
- t1 <- prod(mit.weights[as.character(indices)]) |
|
101 |
+ t1 <- prod(1-mit.weights[as.character(indices)]) |
|
102 | 102 |
t2 <- 1/(m^2) |
103 | 103 |
t3 <- 1/((19-d)/19*4+1) |
104 | 104 |
if (includeDistance){ |
... | ... |
@@ -2,6 +2,12 @@ |
2 | 2 |
\title{crisprScore News} |
3 | 3 |
\encoding{UTF-8} |
4 | 4 |
|
5 |
+ |
|
6 |
+\section{Version 1.3.1}{\itemize{ |
|
7 |
+\item Fixed MIT formula. Previous calculations were erroneous. |
|
8 |
+}} |
|
9 |
+ |
|
10 |
+ |
|
5 | 11 |
\section{Version 1.0.0}{\itemize{ |
6 | 12 |
\item New package \pkg{crisprScore}, for on-target and off-target scoring of guide RNAs (gRNAs). |
7 | 13 |
}} |
8 | 14 |
\ No newline at end of file |
... | ... |
@@ -1,7 +1,7 @@ |
1 | 1 |
ws <- read.table("mit.weights.txt", head=TRUE)$w |
2 |
-names(ws) <- 20:1 |
|
2 |
+names(ws) <- 1:20 |
|
3 | 3 |
mit.weights <- ws |
4 | 4 |
mit.weights <- mit.weights[order(as.numeric(names(mit.weights)))] |
5 | 5 |
save(mit.weights, file="mit.weights.rda") |
6 |
-#Higher scores indicate greater mismatch tolerance |
|
7 |
-#Positions are 5' to 3' (pos20 = most PAM-adjacent position) |
|
6 |
+#Scores of 0 indicate perfect mismatch tolerance |
|
7 |
+#Positions are already 5' to 3' (pos20 = most PAM-adjacent position) |
... | ... |
@@ -11,7 +11,7 @@ protospacers_cas9 <- c("ATCGATGCTGATGCTAGATA", |
11 | 11 |
pam_cas9 <- c("AGG","AAG", "AGA", "AGT", "AGG", "AGG", "AGG") |
12 | 12 |
#dput(round(getMITScores(spacer, protospacers)$score,3)) |
13 | 13 |
#dput(round(getCFDScores(spacer, protospacers)$score,3)) |
14 |
-mit_scores <- c(1, 0.259, 0.069, 0.016, 0.583, 0, 0) |
|
14 |
+mit_scores <- c(1, 0.259, 0.069, 0.016, 0.417, 0.104, 0.004) |
|
15 | 15 |
cfd_scores_cas9 <- c(1, 0.259, 0.069, 0.016, 1, 0.765, 0.301) |
16 | 16 |
|
17 | 17 |
|