# No robust correlation test statistics. # Want to return a 3 by M matrix of observations. corr.Tn <- function(X,test,alternative,use="pairwise"){ P <- dim(X)[1] M <- P*(P-1)/2 N <- dim(X)[2] VCM <- cov(t(X),use=use) Cor <- cov2cor(VCM) Cov.v <- VCM[lower.tri(VCM)] # vectorize. Cor.v <- Cor[lower.tri(Cor)] # vectorize. if(test=="t.cor") num <- sqrt(N-2)*Cor.v/sqrt(1-Cor.v^2) if(test=="z.cor") num <- sqrt(N-3)*0.5*log((1+Cor.v)/(1-Cor.v)) denom <- 1 if(alternative=="two.sided"){ snum<-sign(num) num<-abs(num) } else { if(alternative=="less"){ snum<-(-1) num<-(-num) } else snum<-1 } rbind(num,denom,snum) } ic.tests <- c("t.onesamp","t.pair","t.twosamp.equalvar","t.twosamp.unequalvar","lm.XvsZ","lm.YvsXZ","t.cor","z.cor") corr.null <- function(X,W=NULL,Y=NULL,Z=NULL,test="t.twosamp.unequalvar",alternative="two-sided",use="pairwise",B=1000,MVN.method="mvrnorm",penalty=1e-6,ic.quant.trans=FALSE,marg.null=NULL,marg.par=NULL,perm.mat=NULL){ # Most sanity checks conducted already... p <- dim(X)[1] m <- dim(X)[1] n <- dim(X)[2] cat("calculating vector influence curve...", "\n") if(test=="t.onesamp" | test=="t.pair"){ #t.pair sanity checks and formatting done in stat.closure section #in test.R if(is.null(W)) IC.Cor <- cor(t(X),use=use) else IC.Cor <- IC.CorXW.NA(X,W,N=n,M=p,output="cor") } if(test=="t.twosamp.equalvar" | test=="t.twosamp.unequalvar"){ uY<-sort(unique(Y)) if(length(uY)!=2) stop("Must have two class labels for this test") n1 <- sum(Y==uY[1]) n2 <- sum(Y==uY[2]) if(is.null(W)){ cov1 <- cov(t(X[,Y==uY[1]]),use=use) cov2 <- cov(t(X[,Y==uY[2]]),use=use) } else{ cov1 <- IC.CorXW.NA(X[,Y==uY[1]],W[,Y==uY[1]],N=n1,M=p,output="cov") cov2 <- IC.CorXW.NA(X[,Y==uY[2]],W[,Y==uY[2]],N=n2,M=p,output="cov") } newcov <- cov1/n1 + cov2/n2 IC.Cor <- cov2cor(newcov) } # Regression ICs written to automatically incorporate weights. # If W=NULL, then give equal weights. if(test=="lm.XvsZ"){ if(is.null(Z)) Z <- matrix(1,nrow=n,ncol=1) else Z <- cbind(Z,1) if(is.null(W)) W <- matrix(1/n,nrow=p,ncol=n) IC.i <- matrix(0,nrow=m,ncol=n) for(i in 1:m){ drop <- is.na(X[i,]) | is.na(rowSums(Z)) | is.na(W[i,]) x <- as.numeric(X[i,!drop]) z <- Z[!drop,] w <- W[i,!drop] nn <- n-sum(drop) EXtWXinv <- solve(t(z)%*%(w*diag(nn))%*%z)*sum(w) res.m <- lm.wfit(z,x,w)$res if(sum(drop)>0) res.m <- insert.NA(which(drop==TRUE),res.m) EXtWXinvXt <- rep(0,n) for(j in 1:n){ EXtWXinvXt[j] <- (EXtWXinv%*%(t(Z)[,j]))[1] } IC.i[i,] <- res.m * EXtWXinvXt } IC.Cor <- IC.Cor.NA(IC.i,W,N=n,M=p,output="cor") } if(test=="lm.YvsXZ"){ if(is.null(Y)) stop("An outcome variable is needed for this test") if(length(Y)!=n) stop(paste("Dimension of outcome Y=",length(Y),", not equal dimension of data=",n,sep="")) if(is.null(Z)) Z <- matrix(1,n,1) else Z <- cbind(Z,1) if(is.null(W)) W <- matrix(1,nrow=p,ncol=n) IC.i <- matrix(0,nrow=m,ncol=n) for(i in 1:m){ drop <- is.na(X[i,]) | is.na(rowSums(Z)) | is.na(W[i,]) x <- as.numeric(X[i,!drop]) z <- Z[!drop,] w <- W[i,!drop] y <- Y[!drop] nn <- n-sum(drop) xz <- cbind(x,z) XZ <- cbind(X[i,],Z) EXtWXinv <- solve(t(xz)%*%(w*diag(nn))%*%xz)*sum(w) res.m <- lm.wfit(xz,y,w)$res if(sum(drop)>0) res.m <- insert.NA(which(drop==TRUE),res.m) EXtWXinvXt <- rep(0,n) for(j in 1:n){ EXtWXinvXt[j] <- (EXtWXinv%*%(t(XZ)[,j]))[1] } IC.i[i,] <- res.m * EXtWXinvXt } IC.Cor <- IC.Cor.NA(IC.i,W,N=n,M=p,output="cor") } if(test=="t.cor" | test=="z.cor"){ if(!is.null(W)) warning("Weights not currently implemented for tests of correlation parameters. Proceeding with unweighted version") # Change of dimension P <- dim(X)[1] -> p # Number of variables. M <- P*(P-1)/2 -> m # Actual number of pairwise hypotheses. N <- dim(X)[2] -> m ind <- t(combn(P,2)) VCM <- cov(t(X),use="pairwise") Cor <- cov2cor(VCM) Vars <- diag(VCM) Cov.v <- VCM[lower.tri(VCM)] # vectorize. Cor.v <- Cor[lower.tri(Cor)] # vectorize. X2 <- X*X EX <- rowMeans(X,na.rm=TRUE) E2X <- rowMeans(X2,na.rm=TRUE) Var1.v <- Vars[ind[,1]] Var2.v <- Vars[ind[,2]] EX1.v <- EX[ind[,1]] EX2.v <- EX[ind[,2]] E2X1.v <- E2X[ind[,1]] E2X2.v <- E2X[ind[,2]] X.vec1 <- X[ind[,1],] X.vec2 <- X[ind[,2],] X.vec12 <- X.vec1*X.vec2 EX1X2.v <- rowMeans(X.vec12,na.rm=TRUE) cons <- 1/sqrt(Var1.v*Var2.v) gradient <- matrix(1,nrow=M,ncol=5) gradient[,1] <- EX1.v*Cov.v/Var1.v - EX2.v gradient[,2] <- EX2.v*Cov.v/Var2.v - EX1.v gradient[,3] <- -0.5*Cov.v/Var1.v gradient[,4] <- -0.5*Cov.v/Var2.v IC.i <- matrix(0, nrow=M, ncol=N) for(i in 1:N){ diffs.i <- diffs.1.N(X[ind[,1],i], X[ind[,2],i], EX1.v, EX2.v, E2X1.v, E2X2.v, EX1X2.v) IC.M <- rep(0,M) for(j in 1:M){ IC.M[j] <- gradient[j,]%*%diffs.i[,j] } IC.i[,i] <- IC.M } IC.i <- cons * IC.i IC.Cor <- IC.Cor.NA(IC.i,W=NULL,N=n,M=M,output="cor") } if(ic.quant.trans==FALSE) cat("sampling null test statistics...", "\n\n") else cat("sampling null test statistics...", "\n") if(MVN.method=="mvrnorm") nulldist <- t(mvrnorm(n=B,mu=rep(0,dim(IC.Cor)[1]),Sigma=IC.Cor)) if(MVN.method=="Cholesky"){ IC.chol <- t(chol(IC.Cor+penalty*diag(dim(IC.Cor)[1]))) norms <- matrix(rnorm(B*dim(IC.Cor)[1]),nrow=dim(IC.Cor)[1],ncol=B) nulldist <- IC.chol%*%norms } if(ic.quant.trans==TRUE){ cat("applying quantile transform...", "\n\n") if(is.null(marg.null)){ marg.null <- "t" if(test=="t.cor" | test=="z.cor" | test=="t.twosamp.equalvar") marg.par <- matrix(rep(dim(X)[2]-2,dim(IC.Cor)[1]),nrow=dim(IC.Cor)[1],ncol=1) if(test=="lm.XvsZ") marg.par <- matrix(rep(dim(X)[2]-dim(Z)[2],dim(IC.Cor)[1]),nrow=dim(IC.Cor)[1],ncol=1) if(test=="lm.YvsXZ") marg.par <- matrix(rep(dim(X)[2]-dim(Z)[2]-1,dim(IC.Cor)[1]),nrow=dim(IC.Cor)[1],ncol=1) else marg.par <- matrix(rep(dim(X)[2]-1,dim(IC.Cor)[1]),nrow=dim(IC.Cor)[1],ncol=1) } if(test=="z.cor" & marg.null=="t") warning("IC nulldist for z.cor already MVN. Transforming to N-2 df t marginal distribution not advised.") if(marg.null!="t" & marg.null!="perm") stop("IC nulldists can only be quantile transformed to a marginal t-distribution or user-supplied marginal permutation distribution") if(marg.null=="t") nulldist <- tQuantTrans(nulldist,marg.null="t",marg.par,ncp=0,perm.mat=NULL) if(marg.null=="perm") nulldist <- tQuantTrans(nulldist,marg.null="perm",marg.par=NULL,ncp=NULL,perm.mat=perm.mat) } if(alternative=="greater") nulldist <- nulldist else if(alternative=="less") nulldist <- -nulldist else nulldist <- abs(nulldist) nulldist } # Function, given ICs for each individual, returns variance covariance # matrix or corresponding correlation matrix. IC.Cor.NA <- function(IC,W,N,M,output){ n <- dim(IC)[2] m <- dim(IC)[1] if(is.null(W)){ W <- matrix(1,nrow=dim(IC)[1],ncol=dim(IC)[2]) Wnew <- W/rowSums(W,na.rm=TRUE) # Equal weight, NA handling. } else Wnew <- W/rowSums(W,na.rm=TRUE) IC.VC <- matrix(0,nrow=m,ncol=m) for(i in 1:n){ temp <- crossprod(t(sqrt(Wnew[,i])*IC[,i])) temp[is.na(temp)] <- 0 IC.VC <- IC.VC + temp } if(output=="cov") out <- IC.VC if(output=="cor") out <- cov2cor(IC.VC) out } # Weighted correlation. Generalizes cov.wt() to account for a matrix # of weights. Uses IC formulation instead of sweep() and crossprod(). # May be slower/clunkier, but pretty transparent, and allows for NA # handling much like cor(...,use="pairwise") would. That is, each # element of the correlation matrix returned uses the maximum amount # of information possible in obtaining individual elements of that # matrix. IC.CorXW.NA <- function(X,W,N,M,output){ n <- dim(X)[2] m <- dim(X)[1] XW <- X*W EXW <- rowSums(XW)/rowSums(W) ICW.i <- X-EXW Wnew <- W/rowSums(W,na.rm=T) IC.VC <- matrix(0,nrow=m,ncol=m) for(i in 1:n){ temp <- crossprod(t(sqrt(Wnew[,i])*X[,i])) temp[is.na(temp)] <- 0 IC.VC <- IC.VC + temp } if(output=="cov") out <- IC.VC if(output=="cor") out <- cov2cor(IC.VC) out } # For regression ICs, a function to insert NAs into appropriate locations # of a vector of returned residuals. insert.NA <- function(orig.NA, res.vec){ for(i in 1:length(orig.NA)){ res.vec <- append(res.vec, NA, after=orig.NA[i]-1) } res.vec } # For correlation ICS, a function to get diff vectors for all M. # This is the difference between estimates for # a sample size of one and a sample of size n. diffs.1.N <- function(vec1, vec2, e1, e2, e21, e22, e12){ diff.mat.1.N <- matrix(0,nrow=5,ncol=length(vec1)) diff.mat.1.N[1,] <- vec1 - e1 diff.mat.1.N[2,] <- vec2 - e2 diff.mat.1.N[3,] <- vec1*vec1 - e21 diff.mat.1.N[4,] <- vec2*vec2 - e22 diff.mat.1.N[5,] <- vec1*vec2 - e12 diff.mat.1.N } ### For quantile transform, take a sample from the marginal null distribution. marg.samp <- function(marg.null,marg.par,m,B,ncp){ out <- matrix(0,m,B) for(i in 1:m){ if(marg.null=="normal") out[i,] <- rnorm(B,mean=marg.par[i,1],sd=marg.par[i,2]) if(marg.null=="t") out[i,] <- rt(B,df=marg.par[i,1],ncp) if(marg.null=="f") out[i,] <- rf(B,df1=marg.par[i,1],df2=marg.par[i,2],ncp) } out } ### Quantile transform streamlined for IC nulldists. tQuantTrans <- function(rawboot, marg.null, marg.par, ncp, perm.mat=NULL){ m <- dim(rawboot)[1] B <- dim(rawboot)[2] ranks <- t(apply(rawboot,1,rank,ties.method="random")) if(marg.null=="t") Z.quant <- marg.samp(marg.null="t",marg.par,m,B,ncp) if(marg.null=="perm") Z.quant <- perm.mat Z.quant <- t(apply(Z.quant,1,sort)) if(marg.null!="perm"){ for(i in 1:m){ Z.quant[i,] <- Z.quant[i,][ranks[i,]] } } else{ Z.quant <- t(apply(Z.quant,1,quantile,probs=seq(0,1,length.out=B),na.rm=TRUE)) for(i in 1:m){ Z.quant[i,] <- Z.quant[i,][ranks[i,]] } } Z.quant } ### Effective df for two sample test of means, unequal var. t.effective.df <- function(X,Y){ uY<-sort(unique(Y)) X1 <- X[Y==uY[1]] X2 <- X[Y==uY[2]] mu <- var(X2)/var(X1) n1 <- length(Y[Y==uY[1]]) n2 <- length(Y[Y==uY[2]]) df <- (((1/n1)+(mu/n2))^2)/(1/((n1^2)*(n1-1)) + (mu^2)/((n2^2)*(n2-1))) df }