% Generated by roxygen2: do not edit by hand % Please edit documentation in R/scanpyFunctions.R \name{runScanpyNormalizeData} \alias{runScanpyNormalizeData} \title{runScanpyNormalizeData Wrapper for NormalizeData() function from scanpy library Normalizes the sce object according to the input parameters} \usage{ runScanpyNormalizeData( inSCE, useAssay, targetSum = 10000, maxFraction = 0.05, normAssayName = "scanpyNormData" ) } \arguments{ \item{inSCE}{(sce) object to normalize} \item{useAssay}{Assay containing raw counts to use for normalization.} \item{targetSum}{If NULL, after normalization, each observation (cell) has a total count equal to the median of total counts for observations (cells) before normalization. Default \code{1e4}} \item{maxFraction}{Include cells that have more counts than max_fraction of the original total counts in at least one cell. Default \code{0.05}} \item{normAssayName}{Name of new assay containing normalized data. Default \code{scanpyNormData}.} } \value{ Normalized \code{SingleCellExperiment} object } \description{ runScanpyNormalizeData Wrapper for NormalizeData() function from scanpy library Normalizes the sce object according to the input parameters } \examples{ data(scExample, package = "singleCellTK") sce <- subsetSCECols(sce, colData = "type != 'EmptyDroplet'") rownames(sce) <- rowData(sce)$feature_name \dontrun{ sce <- runScanpyNormalizeData(sce, useAssay = "counts") } }