1//===- Preprocessor.h - C Language Family Preprocessor ----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Defines the clang::Preprocessor interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_LEX_PREPROCESSOR_H
15#define LLVM_CLANG_LEX_PREPROCESSOR_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/DiagnosticIDs.h"
19#include "clang/Basic/IdentifierTable.h"
20#include "clang/Basic/LLVM.h"
21#include "clang/Basic/LangOptions.h"
22#include "clang/Basic/Module.h"
23#include "clang/Basic/SourceLocation.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Basic/TokenKinds.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "clang/Lex/Lexer.h"
28#include "clang/Lex/MacroInfo.h"
29#include "clang/Lex/ModuleLoader.h"
30#include "clang/Lex/ModuleMap.h"
31#include "clang/Lex/PPCallbacks.h"
32#include "clang/Lex/PPEmbedParameters.h"
33#include "clang/Lex/Token.h"
34#include "clang/Lex/TokenLexer.h"
35#include "clang/Support/Compiler.h"
36#include "llvm/ADT/APSInt.h"
37#include "llvm/ADT/ArrayRef.h"
38#include "llvm/ADT/DenseMap.h"
39#include "llvm/ADT/FoldingSet.h"
40#include "llvm/ADT/FunctionExtras.h"
41#include "llvm/ADT/PointerUnion.h"
42#include "llvm/ADT/STLExtras.h"
43#include "llvm/ADT/SmallPtrSet.h"
44#include "llvm/ADT/SmallVector.h"
45#include "llvm/ADT/StringRef.h"
46#include "llvm/ADT/TinyPtrVector.h"
47#include "llvm/ADT/iterator_range.h"
48#include "llvm/Support/Allocator.h"
49#include "llvm/Support/Casting.h"
50#include "llvm/Support/Registry.h"
51#include <cassert>
52#include <cstddef>
53#include <cstdint>
54#include <map>
55#include <memory>
56#include <optional>
57#include <string>
58#include <utility>
59#include <vector>
60
61namespace llvm {
62
63template<unsigned InternalLen> class SmallString;
64
65} // namespace llvm
66
67namespace clang {
68
69class CodeCompletionHandler;
70class CommentHandler;
71class DirectoryEntry;
72class EmptylineHandler;
73class ExternalPreprocessorSource;
74class FileEntry;
75class FileManager;
76class HeaderSearch;
77class MacroArgs;
78class PragmaHandler;
79class PragmaNamespace;
80class PreprocessingRecord;
81class PreprocessorLexer;
82class PreprocessorOptions;
83class ScratchBuffer;
84class TargetInfo;
85
86namespace Builtin {
87class Context;
88}
89
90/// Stores token information for comparing actual tokens with
91/// predefined values. Only handles simple tokens and identifiers.
92class TokenValue {
93 tok::TokenKind Kind;
94 IdentifierInfo *II;
95
96public:
97 TokenValue(tok::TokenKind Kind) : Kind(Kind), II(nullptr) {
98 assert(Kind != tok::raw_identifier && "Raw identifiers are not supported.");
99 assert(Kind != tok::identifier &&
100 "Identifiers should be created by TokenValue(IdentifierInfo *)");
101 assert(!tok::isLiteral(Kind) && "Literals are not supported.");
102 assert(!tok::isAnnotation(Kind) && "Annotations are not supported.");
103 }
104
105 TokenValue(IdentifierInfo *II) : Kind(tok::identifier), II(II) {}
106
107 bool operator==(const Token &Tok) const {
108 return Tok.getKind() == Kind &&
109 (!II || II == Tok.getIdentifierInfo());
110 }
111};
112
113/// Context in which macro name is used.
114enum MacroUse {
115 // other than #define or #undef
116 MU_Other = 0,
117
118 // macro name specified in #define
119 MU_Define = 1,
120
121 // macro name specified in #undef
122 MU_Undef = 2
123};
124
125enum class EmbedResult {
126 Invalid = -1, // Parsing error occurred.
127 NotFound = 0, // Corresponds to __STDC_EMBED_NOT_FOUND__
128 Found = 1, // Corresponds to __STDC_EMBED_FOUND__
129 Empty = 2, // Corresponds to __STDC_EMBED_EMPTY__
130};
131
132struct CXXStandardLibraryVersionInfo {
133 enum Library { Unknown, LibStdCXX };
134 Library Lib;
135 std::uint64_t Version;
136};
137
138/// Engages in a tight little dance with the lexer to efficiently
139/// preprocess tokens.
140///
141/// Lexers know only about tokens within a single source file, and don't
142/// know anything about preprocessor-level issues like the \#include stack,
143/// token expansion, etc.
144class Preprocessor {
145 friend class VAOptDefinitionContext;
146 friend class VariadicMacroScopeGuard;
147
148 llvm::unique_function<void(const clang::Token &)> OnToken;
149 /// Functor for getting the dependency preprocessor directives of a file.
150 ///
151 /// These are directives derived from a special form of lexing where the
152 /// source input is scanned for the preprocessor directives that might have an
153 /// effect on the dependencies for a compilation unit.
154 DependencyDirectivesGetter *GetDependencyDirectives = nullptr;
155 const PreprocessorOptions &PPOpts;
156 DiagnosticsEngine *Diags;
157 const LangOptions &LangOpts;
158 const TargetInfo *Target = nullptr;
159 const TargetInfo *AuxTarget = nullptr;
160 FileManager &FileMgr;
161 SourceManager &SourceMgr;
162 std::unique_ptr<ScratchBuffer> ScratchBuf;
163 HeaderSearch &HeaderInfo;
164 ModuleLoader &TheModuleLoader;
165
166 /// External source of macros.
167 ExternalPreprocessorSource *ExternalSource;
168
169 /// A BumpPtrAllocator object used to quickly allocate and release
170 /// objects internal to the Preprocessor.
171 llvm::BumpPtrAllocator BP;
172
173 /// Identifiers for builtin macros and other builtins.
174 IdentifierInfo *Ident__LINE__, *Ident__FILE__; // __LINE__, __FILE__
175 IdentifierInfo *Ident__DATE__, *Ident__TIME__; // __DATE__, __TIME__
176 IdentifierInfo *Ident__INCLUDE_LEVEL__; // __INCLUDE_LEVEL__
177 IdentifierInfo *Ident__BASE_FILE__; // __BASE_FILE__
178 IdentifierInfo *Ident__FILE_NAME__; // __FILE_NAME__
179 IdentifierInfo *Ident__TIMESTAMP__; // __TIMESTAMP__
180 IdentifierInfo *Ident__COUNTER__; // __COUNTER__
181 IdentifierInfo *Ident_Pragma, *Ident__pragma; // _Pragma, __pragma
182 IdentifierInfo *Ident__identifier; // __identifier
183 IdentifierInfo *Ident__VA_ARGS__; // __VA_ARGS__
184 IdentifierInfo *Ident__VA_OPT__; // __VA_OPT__
185 IdentifierInfo *Ident__has_feature; // __has_feature
186 IdentifierInfo *Ident__has_extension; // __has_extension
187 IdentifierInfo *Ident__has_builtin; // __has_builtin
188 IdentifierInfo *Ident__has_constexpr_builtin; // __has_constexpr_builtin
189 IdentifierInfo *Ident__has_attribute; // __has_attribute
190 IdentifierInfo *Ident__has_embed; // __has_embed
191 IdentifierInfo *Ident__has_include; // __has_include
192 IdentifierInfo *Ident__has_include_next; // __has_include_next
193 IdentifierInfo *Ident__has_warning; // __has_warning
194 IdentifierInfo *Ident__is_identifier; // __is_identifier
195 IdentifierInfo *Ident__building_module; // __building_module
196 IdentifierInfo *Ident__MODULE__; // __MODULE__
197 IdentifierInfo *Ident__has_cpp_attribute; // __has_cpp_attribute
198 IdentifierInfo *Ident__has_c_attribute; // __has_c_attribute
199 IdentifierInfo *Ident__has_declspec; // __has_declspec_attribute
200 IdentifierInfo *Ident__is_target_arch; // __is_target_arch
201 IdentifierInfo *Ident__is_target_vendor; // __is_target_vendor
202 IdentifierInfo *Ident__is_target_os; // __is_target_os
203 IdentifierInfo *Ident__is_target_environment; // __is_target_environment
204 IdentifierInfo *Ident__is_target_variant_os;
205 IdentifierInfo *Ident__is_target_variant_environment;
206 IdentifierInfo *Ident__FLT_EVAL_METHOD__; // __FLT_EVAL_METHOD
207
208 // Weak, only valid (and set) while InMacroArgs is true.
209 Token* ArgMacro;
210
211 SourceLocation DATELoc, TIMELoc;
212
213 // FEM_UnsetOnCommandLine means that an explicit evaluation method was
214 // not specified on the command line. The target is queried to set the
215 // default evaluation method.
216 LangOptions::FPEvalMethodKind CurrentFPEvalMethod =
217 LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine;
218
219 // The most recent pragma location where the floating point evaluation
220 // method was modified. This is used to determine whether the
221 // 'pragma clang fp eval_method' was used whithin the current scope.
222 SourceLocation LastFPEvalPragmaLocation;
223
224 LangOptions::FPEvalMethodKind TUFPEvalMethod =
225 LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine;
226
227 // Next __COUNTER__ value, starts at 0.
228 unsigned CounterValue = 0;
229
230 enum {
231 /// Maximum depth of \#includes.
232 MaxAllowedIncludeStackDepth = 200
233 };
234
235 // State that is set before the preprocessor begins.
236 bool KeepComments : 1;
237 bool KeepMacroComments : 1;
238 bool SuppressIncludeNotFoundError : 1;
239
240 // State that changes while the preprocessor runs:
241 bool InMacroArgs : 1; // True if parsing fn macro invocation args.
242
243 /// Whether the preprocessor owns the header search object.
244 bool OwnsHeaderSearch : 1;
245
246 /// True if macro expansion is disabled.
247 bool DisableMacroExpansion : 1;
248
249 /// Temporarily disables DisableMacroExpansion (i.e. enables expansion)
250 /// when parsing preprocessor directives.
251 bool MacroExpansionInDirectivesOverride : 1;
252
253 class ResetMacroExpansionHelper;
254
255 /// Whether we have already loaded macros from the external source.
256 mutable bool ReadMacrosFromExternalSource : 1;
257
258 /// True if pragmas are enabled.
259 bool PragmasEnabled : 1;
260
261 /// True if the current build action is a preprocessing action.
262 bool PreprocessedOutput : 1;
263
264 /// True if we are currently preprocessing a #if or #elif directive
265 bool ParsingIfOrElifDirective;
266
267 /// True if we are pre-expanding macro arguments.
268 bool InMacroArgPreExpansion;
269
270 /// Mapping/lookup information for all identifiers in
271 /// the program, including program keywords.
272 mutable IdentifierTable Identifiers;
273
274 /// This table contains all the selectors in the program.
275 ///
276 /// Unlike IdentifierTable above, this table *isn't* populated by the
277 /// preprocessor. It is declared/expanded here because its role/lifetime is
278 /// conceptually similar to the IdentifierTable. In addition, the current
279 /// control flow (in clang::ParseAST()), make it convenient to put here.
280 ///
281 /// FIXME: Make sure the lifetime of Identifiers/Selectors *isn't* tied to
282 /// the lifetime of the preprocessor.
283 SelectorTable Selectors;
284
285 /// Information about builtins.
286 std::unique_ptr<Builtin::Context> BuiltinInfo;
287
288 /// Tracks all of the pragmas that the client registered
289 /// with this preprocessor.
290 std::unique_ptr<PragmaNamespace> PragmaHandlers;
291
292 /// Pragma handlers of the original source is stored here during the
293 /// parsing of a model file.
294 std::unique_ptr<PragmaNamespace> PragmaHandlersBackup;
295
296 /// Tracks all of the comment handlers that the client registered
297 /// with this preprocessor.
298 std::vector<CommentHandler *> CommentHandlers;
299
300 /// Empty line handler.
301 EmptylineHandler *Emptyline = nullptr;
302
303 /// True to avoid tearing down the lexer etc on EOF
304 bool IncrementalProcessing = false;
305
306public:
307 /// The kind of translation unit we are processing.
308 const TranslationUnitKind TUKind;
309
310 /// Returns a pointer into the given file's buffer that's guaranteed
311 /// to be between tokens. The returned pointer is always before \p Start.
312 /// The maximum distance betweenthe returned pointer and \p Start is
313 /// limited by a constant value, but also an implementation detail.
314 /// If no such check point exists, \c nullptr is returned.
315 const char *getCheckPoint(FileID FID, const char *Start) const;
316
317private:
318 /// The code-completion handler.
319 CodeCompletionHandler *CodeComplete = nullptr;
320
321 /// The file that we're performing code-completion for, if any.
322 const FileEntry *CodeCompletionFile = nullptr;
323
324 /// The offset in file for the code-completion point.
325 unsigned CodeCompletionOffset = 0;
326
327 /// The location for the code-completion point. This gets instantiated
328 /// when the CodeCompletionFile gets \#include'ed for preprocessing.
329 SourceLocation CodeCompletionLoc;
330
331 /// The start location for the file of the code-completion point.
332 ///
333 /// This gets instantiated when the CodeCompletionFile gets \#include'ed
334 /// for preprocessing.
335 SourceLocation CodeCompletionFileLoc;
336
337 /// The source location of the \c import contextual keyword we just
338 /// lexed, if any.
339 SourceLocation ModuleImportLoc;
340
341 /// The import path for named module that we're currently processing.
342 SmallVector<IdentifierLoc, 2> NamedModuleImportPath;
343
344 llvm::DenseMap<FileID, SmallVector<const char *>> CheckPoints;
345 unsigned CheckPointCounter = 0;
346
347 /// Whether the import is an `@import` or a standard c++ modules import.
348 bool IsAtImport = false;
349
350 /// Whether the last token we lexed was an '@'.
351 bool LastTokenWasAt = false;
352
353 /// A position within a C++20 import-seq.
354 class StdCXXImportSeq {
355 public:
356 enum State : int {
357 // Positive values represent a number of unclosed brackets.
358 AtTopLevel = 0,
359 AfterTopLevelTokenSeq = -1,
360 AfterExport = -2,
361 AfterImportSeq = -3,
362 };
363
364 StdCXXImportSeq(State S) : S(S) {}
365
366 /// Saw any kind of open bracket.
367 void handleOpenBracket() {
368 S = static_cast<State>(std::max<int>(a: S, b: 0) + 1);
369 }
370 /// Saw any kind of close bracket other than '}'.
371 void handleCloseBracket() {
372 S = static_cast<State>(std::max<int>(a: S, b: 1) - 1);
373 }
374 /// Saw a close brace.
375 void handleCloseBrace() {
376 handleCloseBracket();
377 if (S == AtTopLevel && !AfterHeaderName)
378 S = AfterTopLevelTokenSeq;
379 }
380 /// Saw a semicolon.
381 void handleSemi() {
382 if (atTopLevel()) {
383 S = AfterTopLevelTokenSeq;
384 AfterHeaderName = false;
385 }
386 }
387
388 /// Saw an 'export' identifier.
389 void handleExport() {
390 if (S == AfterTopLevelTokenSeq)
391 S = AfterExport;
392 else if (S <= 0)
393 S = AtTopLevel;
394 }
395 /// Saw an 'import' identifier.
396 void handleImport() {
397 if (S == AfterTopLevelTokenSeq || S == AfterExport)
398 S = AfterImportSeq;
399 else if (S <= 0)
400 S = AtTopLevel;
401 }
402
403 /// Saw a 'header-name' token; do not recognize any more 'import' tokens
404 /// until we reach a top-level semicolon.
405 void handleHeaderName() {
406 if (S == AfterImportSeq)
407 AfterHeaderName = true;
408 handleMisc();
409 }
410
411 /// Saw any other token.
412 void handleMisc() {
413 if (S <= 0)
414 S = AtTopLevel;
415 }
416
417 bool atTopLevel() { return S <= 0; }
418 bool afterImportSeq() { return S == AfterImportSeq; }
419 bool afterTopLevelSeq() { return S == AfterTopLevelTokenSeq; }
420
421 private:
422 State S;
423 /// Whether we're in the pp-import-suffix following the header-name in a
424 /// pp-import. If so, a close-brace is not sufficient to end the
425 /// top-level-token-seq of an import-seq.
426 bool AfterHeaderName = false;
427 };
428
429 /// Our current position within a C++20 import-seq.
430 StdCXXImportSeq StdCXXImportSeqState = StdCXXImportSeq::AfterTopLevelTokenSeq;
431
432 /// Track whether we are in a Global Module Fragment
433 class TrackGMF {
434 public:
435 enum GMFState : int {
436 GMFActive = 1,
437 MaybeGMF = 0,
438 BeforeGMFIntroducer = -1,
439 GMFAbsentOrEnded = -2,
440 };
441
442 TrackGMF(GMFState S) : S(S) {}
443
444 /// Saw a semicolon.
445 void handleSemi() {
446 // If it is immediately after the first instance of the module keyword,
447 // then that introduces the GMF.
448 if (S == MaybeGMF)
449 S = GMFActive;
450 }
451
452 /// Saw an 'export' identifier.
453 void handleExport() {
454 // The presence of an 'export' keyword always ends or excludes a GMF.
455 S = GMFAbsentOrEnded;
456 }
457
458 /// Saw an 'import' identifier.
459 void handleImport(bool AfterTopLevelTokenSeq) {
460 // If we see this before any 'module' kw, then we have no GMF.
461 if (AfterTopLevelTokenSeq && S == BeforeGMFIntroducer)
462 S = GMFAbsentOrEnded;
463 }
464
465 /// Saw a 'module' identifier.
466 void handleModule(bool AfterTopLevelTokenSeq) {
467 // This was the first module identifier and not preceded by any token
468 // that would exclude a GMF. It could begin a GMF, but only if directly
469 // followed by a semicolon.
470 if (AfterTopLevelTokenSeq && S == BeforeGMFIntroducer)
471 S = MaybeGMF;
472 else
473 S = GMFAbsentOrEnded;
474 }
475
476 /// Saw any other token.
477 void handleMisc() {
478 // We saw something other than ; after the 'module' kw, so not a GMF.
479 if (S == MaybeGMF)
480 S = GMFAbsentOrEnded;
481 }
482
483 bool inGMF() { return S == GMFActive; }
484
485 private:
486 /// Track the transitions into and out of a Global Module Fragment,
487 /// if one is present.
488 GMFState S;
489 };
490
491 TrackGMF TrackGMFState = TrackGMF::BeforeGMFIntroducer;
492
493 /// Track the status of the c++20 module decl.
494 ///
495 /// module-declaration:
496 /// 'export'[opt] 'module' module-name module-partition[opt]
497 /// attribute-specifier-seq[opt] ';'
498 ///
499 /// module-name:
500 /// module-name-qualifier[opt] identifier
501 ///
502 /// module-partition:
503 /// ':' module-name-qualifier[opt] identifier
504 ///
505 /// module-name-qualifier:
506 /// identifier '.'
507 /// module-name-qualifier identifier '.'
508 ///
509 /// Transition state:
510 ///
511 /// NotAModuleDecl --- export ---> FoundExport
512 /// NotAModuleDecl --- module ---> ImplementationCandidate
513 /// FoundExport --- module ---> InterfaceCandidate
514 /// ImplementationCandidate --- Identifier ---> ImplementationCandidate
515 /// ImplementationCandidate --- period ---> ImplementationCandidate
516 /// ImplementationCandidate --- colon ---> ImplementationCandidate
517 /// InterfaceCandidate --- Identifier ---> InterfaceCandidate
518 /// InterfaceCandidate --- period ---> InterfaceCandidate
519 /// InterfaceCandidate --- colon ---> InterfaceCandidate
520 /// ImplementationCandidate --- Semi ---> NamedModuleImplementation
521 /// NamedModuleInterface --- Semi ---> NamedModuleInterface
522 /// NamedModuleImplementation --- Anything ---> NamedModuleImplementation
523 /// NamedModuleInterface --- Anything ---> NamedModuleInterface
524 ///
525 /// FIXME: We haven't handle attribute-specifier-seq here. It may not be bad
526 /// soon since we don't support any module attributes yet.
527 class ModuleDeclSeq {
528 enum ModuleDeclState : int {
529 NotAModuleDecl,
530 FoundExport,
531 InterfaceCandidate,
532 ImplementationCandidate,
533 NamedModuleInterface,
534 NamedModuleImplementation,
535 };
536
537 public:
538 ModuleDeclSeq() = default;
539
540 void handleExport() {
541 if (State == NotAModuleDecl)
542 State = FoundExport;
543 else if (!isNamedModule())
544 reset();
545 }
546
547 void handleModule() {
548 if (State == FoundExport)
549 State = InterfaceCandidate;
550 else if (State == NotAModuleDecl)
551 State = ImplementationCandidate;
552 else if (!isNamedModule())
553 reset();
554 }
555
556 void handleIdentifier(IdentifierInfo *Identifier) {
557 if (isModuleCandidate() && Identifier)
558 Name += Identifier->getName().str();
559 else if (!isNamedModule())
560 reset();
561 }
562
563 void handleColon() {
564 if (isModuleCandidate())
565 Name += ":";
566 else if (!isNamedModule())
567 reset();
568 }
569
570 void handlePeriod() {
571 if (isModuleCandidate())
572 Name += ".";
573 else if (!isNamedModule())
574 reset();
575 }
576
577 void handleSemi() {
578 if (!Name.empty() && isModuleCandidate()) {
579 if (State == InterfaceCandidate)
580 State = NamedModuleInterface;
581 else if (State == ImplementationCandidate)
582 State = NamedModuleImplementation;
583 else
584 llvm_unreachable("Unimaged ModuleDeclState.");
585 } else if (!isNamedModule())
586 reset();
587 }
588
589 void handleMisc() {
590 if (!isNamedModule())
591 reset();
592 }
593
594 bool isModuleCandidate() const {
595 return State == InterfaceCandidate || State == ImplementationCandidate;
596 }
597
598 bool isNamedModule() const {
599 return State == NamedModuleInterface ||
600 State == NamedModuleImplementation;
601 }
602
603 bool isNamedInterface() const { return State == NamedModuleInterface; }
604
605 bool isImplementationUnit() const {
606 return State == NamedModuleImplementation && !getName().contains(C: ':');
607 }
608
609 StringRef getName() const {
610 assert(isNamedModule() && "Can't get name from a non named module");
611 return Name;
612 }
613
614 StringRef getPrimaryName() const {
615 assert(isNamedModule() && "Can't get name from a non named module");
616 return getName().split(Separator: ':').first;
617 }
618
619 void reset() {
620 Name.clear();
621 State = NotAModuleDecl;
622 }
623
624 private:
625 ModuleDeclState State = NotAModuleDecl;
626 std::string Name;
627 };
628
629 ModuleDeclSeq ModuleDeclState;
630
631 /// Whether the module import expects an identifier next. Otherwise,
632 /// it expects a '.' or ';'.
633 bool ModuleImportExpectsIdentifier = false;
634
635 /// The identifier and source location of the currently-active
636 /// \#pragma clang arc_cf_code_audited begin.
637 IdentifierLoc PragmaARCCFCodeAuditedInfo;
638
639 /// The source location of the currently-active
640 /// \#pragma clang assume_nonnull begin.
641 SourceLocation PragmaAssumeNonNullLoc;
642
643 /// Set only for preambles which end with an active
644 /// \#pragma clang assume_nonnull begin.
645 ///
646 /// When the preamble is loaded into the main file,
647 /// `PragmaAssumeNonNullLoc` will be set to this to
648 /// replay the unterminated assume_nonnull.
649 SourceLocation PreambleRecordedPragmaAssumeNonNullLoc;
650
651 /// True if we hit the code-completion point.
652 bool CodeCompletionReached = false;
653
654 /// The code completion token containing the information
655 /// on the stem that is to be code completed.
656 IdentifierInfo *CodeCompletionII = nullptr;
657
658 /// Range for the code completion token.
659 SourceRange CodeCompletionTokenRange;
660
661 /// The directory that the main file should be considered to occupy,
662 /// if it does not correspond to a real file (as happens when building a
663 /// module).
664 OptionalDirectoryEntryRef MainFileDir;
665
666 /// The number of bytes that we will initially skip when entering the
667 /// main file, along with a flag that indicates whether skipping this number
668 /// of bytes will place the lexer at the start of a line.
669 ///
670 /// This is used when loading a precompiled preamble.
671 std::pair<int, bool> SkipMainFilePreamble;
672
673 /// Whether we hit an error due to reaching max allowed include depth. Allows
674 /// to avoid hitting the same error over and over again.
675 bool HasReachedMaxIncludeDepth = false;
676
677 /// The number of currently-active calls to Lex.
678 ///
679 /// Lex is reentrant, and asking for an (end-of-phase-4) token can often
680 /// require asking for multiple additional tokens. This counter makes it
681 /// possible for Lex to detect whether it's producing a token for the end
682 /// of phase 4 of translation or for some other situation.
683 unsigned LexLevel = 0;
684
685 /// The number of (LexLevel 0) preprocessor tokens.
686 unsigned TokenCount = 0;
687
688 /// Preprocess every token regardless of LexLevel.
689 bool PreprocessToken = false;
690
691 /// The maximum number of (LexLevel 0) tokens before issuing a -Wmax-tokens
692 /// warning, or zero for unlimited.
693 unsigned MaxTokens = 0;
694 SourceLocation MaxTokensOverrideLoc;
695
696public:
697 struct PreambleSkipInfo {
698 SourceLocation HashTokenLoc;
699 SourceLocation IfTokenLoc;
700 bool FoundNonSkipPortion;
701 bool FoundElse;
702 SourceLocation ElseLoc;
703
704 PreambleSkipInfo(SourceLocation HashTokenLoc, SourceLocation IfTokenLoc,
705 bool FoundNonSkipPortion, bool FoundElse,
706 SourceLocation ElseLoc)
707 : HashTokenLoc(HashTokenLoc), IfTokenLoc(IfTokenLoc),
708 FoundNonSkipPortion(FoundNonSkipPortion), FoundElse(FoundElse),
709 ElseLoc(ElseLoc) {}
710 };
711
712 using IncludedFilesSet = llvm::DenseSet<const FileEntry *>;
713
714private:
715 friend class ASTReader;
716 friend class MacroArgs;
717
718 class PreambleConditionalStackStore {
719 enum State {
720 Off = 0,
721 Recording = 1,
722 Replaying = 2,
723 };
724
725 public:
726 PreambleConditionalStackStore() = default;
727
728 void startRecording() { ConditionalStackState = Recording; }
729 void startReplaying() { ConditionalStackState = Replaying; }
730 bool isRecording() const { return ConditionalStackState == Recording; }
731 bool isReplaying() const { return ConditionalStackState == Replaying; }
732
733 ArrayRef<PPConditionalInfo> getStack() const {
734 return ConditionalStack;
735 }
736
737 void doneReplaying() {
738 ConditionalStack.clear();
739 ConditionalStackState = Off;
740 }
741
742 void setStack(ArrayRef<PPConditionalInfo> s) {
743 if (!isRecording() && !isReplaying())
744 return;
745 ConditionalStack.clear();
746 ConditionalStack.append(in_start: s.begin(), in_end: s.end());
747 }
748
749 bool hasRecordedPreamble() const { return !ConditionalStack.empty(); }
750
751 bool reachedEOFWhileSkipping() const { return SkipInfo.has_value(); }
752
753 void clearSkipInfo() { SkipInfo.reset(); }
754
755 std::optional<PreambleSkipInfo> SkipInfo;
756
757 private:
758 SmallVector<PPConditionalInfo, 4> ConditionalStack;
759 State ConditionalStackState = Off;
760 } PreambleConditionalStack;
761
762 /// The current top of the stack that we're lexing from if
763 /// not expanding a macro and we are lexing directly from source code.
764 ///
765 /// Only one of CurLexer, or CurTokenLexer will be non-null.
766 std::unique_ptr<Lexer> CurLexer;
767
768 /// The current top of the stack that we're lexing from
769 /// if not expanding a macro.
770 ///
771 /// This is an alias for CurLexer.
772 PreprocessorLexer *CurPPLexer = nullptr;
773
774 /// Used to find the current FileEntry, if CurLexer is non-null
775 /// and if applicable.
776 ///
777 /// This allows us to implement \#include_next and find directory-specific
778 /// properties.
779 ConstSearchDirIterator CurDirLookup = nullptr;
780
781 /// The current macro we are expanding, if we are expanding a macro.
782 ///
783 /// One of CurLexer and CurTokenLexer must be null.
784 std::unique_ptr<TokenLexer> CurTokenLexer;
785
786 /// The kind of lexer we're currently working with.
787 typedef bool (*LexerCallback)(Preprocessor &, Token &);
788 LexerCallback CurLexerCallback = &CLK_Lexer;
789
790 /// If the current lexer is for a submodule that is being built, this
791 /// is that submodule.
792 Module *CurLexerSubmodule = nullptr;
793
794 /// Keeps track of the stack of files currently
795 /// \#included, and macros currently being expanded from, not counting
796 /// CurLexer/CurTokenLexer.
797 struct IncludeStackInfo {
798 LexerCallback CurLexerCallback;
799 Module *TheSubmodule;
800 std::unique_ptr<Lexer> TheLexer;
801 PreprocessorLexer *ThePPLexer;
802 std::unique_ptr<TokenLexer> TheTokenLexer;
803 ConstSearchDirIterator TheDirLookup;
804
805 // The following constructors are completely useless copies of the default
806 // versions, only needed to pacify MSVC.
807 IncludeStackInfo(LexerCallback CurLexerCallback, Module *TheSubmodule,
808 std::unique_ptr<Lexer> &&TheLexer,
809 PreprocessorLexer *ThePPLexer,
810 std::unique_ptr<TokenLexer> &&TheTokenLexer,
811 ConstSearchDirIterator TheDirLookup)
812 : CurLexerCallback(std::move(CurLexerCallback)),
813 TheSubmodule(std::move(TheSubmodule)), TheLexer(std::move(TheLexer)),
814 ThePPLexer(std::move(ThePPLexer)),
815 TheTokenLexer(std::move(TheTokenLexer)),
816 TheDirLookup(std::move(TheDirLookup)) {}
817 };
818 std::vector<IncludeStackInfo> IncludeMacroStack;
819
820 /// Actions invoked when some preprocessor activity is
821 /// encountered (e.g. a file is \#included, etc).
822 std::unique_ptr<PPCallbacks> Callbacks;
823
824 struct MacroExpandsInfo {
825 Token Tok;
826 MacroDefinition MD;
827 SourceRange Range;
828
829 MacroExpandsInfo(Token Tok, MacroDefinition MD, SourceRange Range)
830 : Tok(Tok), MD(MD), Range(Range) {}
831 };
832 SmallVector<MacroExpandsInfo, 2> DelayedMacroExpandsCallbacks;
833
834 /// Information about a name that has been used to define a module macro.
835 struct ModuleMacroInfo {
836 /// The most recent macro directive for this identifier.
837 MacroDirective *MD;
838
839 /// The active module macros for this identifier.
840 llvm::TinyPtrVector<ModuleMacro *> ActiveModuleMacros;
841
842 /// The generation number at which we last updated ActiveModuleMacros.
843 /// \see Preprocessor::VisibleModules.
844 unsigned ActiveModuleMacrosGeneration = 0;
845
846 /// Whether this macro name is ambiguous.
847 bool IsAmbiguous = false;
848
849 /// The module macros that are overridden by this macro.
850 llvm::TinyPtrVector<ModuleMacro *> OverriddenMacros;
851
852 ModuleMacroInfo(MacroDirective *MD) : MD(MD) {}
853 };
854
855 /// The state of a macro for an identifier.
856 class MacroState {
857 mutable llvm::PointerUnion<MacroDirective *, ModuleMacroInfo *> State;
858
859 ModuleMacroInfo *getModuleInfo(Preprocessor &PP,
860 const IdentifierInfo *II) const {
861 if (II->isOutOfDate())
862 PP.updateOutOfDateIdentifier(II: *II);
863 // FIXME: Find a spare bit on IdentifierInfo and store a
864 // HasModuleMacros flag.
865 if (!II->hasMacroDefinition() ||
866 (!PP.getLangOpts().Modules &&
867 !PP.getLangOpts().ModulesLocalVisibility) ||
868 !PP.CurSubmoduleState->VisibleModules.getGeneration())
869 return nullptr;
870
871 auto *Info = dyn_cast_if_present<ModuleMacroInfo *>(Val&: State);
872 if (!Info) {
873 Info = new (PP.getPreprocessorAllocator())
874 ModuleMacroInfo(cast<MacroDirective *>(Val&: State));
875 State = Info;
876 }
877
878 if (PP.CurSubmoduleState->VisibleModules.getGeneration() !=
879 Info->ActiveModuleMacrosGeneration)
880 PP.updateModuleMacroInfo(II, Info&: *Info);
881 return Info;
882 }
883
884 public:
885 MacroState() : MacroState(nullptr) {}
886 MacroState(MacroDirective *MD) : State(MD) {}
887
888 MacroState(MacroState &&O) noexcept : State(O.State) {
889 O.State = (MacroDirective *)nullptr;
890 }
891
892 MacroState &operator=(MacroState &&O) noexcept {
893 auto S = O.State;
894 O.State = (MacroDirective *)nullptr;
895 State = S;
896 return *this;
897 }
898
899 ~MacroState() {
900 if (auto *Info = dyn_cast_if_present<ModuleMacroInfo *>(Val&: State))
901 Info->~ModuleMacroInfo();
902 }
903
904 MacroDirective *getLatest() const {
905 if (auto *Info = dyn_cast_if_present<ModuleMacroInfo *>(Val&: State))
906 return Info->MD;
907 return cast<MacroDirective *>(Val&: State);
908 }
909
910 void setLatest(MacroDirective *MD) {
911 if (auto *Info = dyn_cast_if_present<ModuleMacroInfo *>(Val&: State))
912 Info->MD = MD;
913 else
914 State = MD;
915 }
916
917 bool isAmbiguous(Preprocessor &PP, const IdentifierInfo *II) const {
918 auto *Info = getModuleInfo(PP, II);
919 return Info ? Info->IsAmbiguous : false;
920 }
921
922 ArrayRef<ModuleMacro *>
923 getActiveModuleMacros(Preprocessor &PP, const IdentifierInfo *II) const {
924 if (auto *Info = getModuleInfo(PP, II))
925 return Info->ActiveModuleMacros;
926 return {};
927 }
928
929 MacroDirective::DefInfo findDirectiveAtLoc(SourceLocation Loc,
930 SourceManager &SourceMgr) const {
931 // FIXME: Incorporate module macros into the result of this.
932 if (auto *Latest = getLatest())
933 return Latest->findDirectiveAtLoc(L: Loc, SM: SourceMgr);
934 return {};
935 }
936
937 void overrideActiveModuleMacros(Preprocessor &PP, IdentifierInfo *II) {
938 if (auto *Info = getModuleInfo(PP, II)) {
939 Info->OverriddenMacros.insert(I: Info->OverriddenMacros.end(),
940 From: Info->ActiveModuleMacros.begin(),
941 To: Info->ActiveModuleMacros.end());
942 Info->ActiveModuleMacros.clear();
943 Info->IsAmbiguous = false;
944 }
945 }
946
947 ArrayRef<ModuleMacro*> getOverriddenMacros() const {
948 if (auto *Info = dyn_cast_if_present<ModuleMacroInfo *>(Val&: State))
949 return Info->OverriddenMacros;
950 return {};
951 }
952
953 void setOverriddenMacros(Preprocessor &PP,
954 ArrayRef<ModuleMacro *> Overrides) {
955 auto *Info = dyn_cast_if_present<ModuleMacroInfo *>(Val&: State);
956 if (!Info) {
957 if (Overrides.empty())
958 return;
959 Info = new (PP.getPreprocessorAllocator())
960 ModuleMacroInfo(cast<MacroDirective *>(Val&: State));
961 State = Info;
962 }
963 Info->OverriddenMacros.clear();
964 Info->OverriddenMacros.insert(I: Info->OverriddenMacros.end(),
965 From: Overrides.begin(), To: Overrides.end());
966 Info->ActiveModuleMacrosGeneration = 0;
967 }
968 };
969
970 /// For each IdentifierInfo that was associated with a macro, we
971 /// keep a mapping to the history of all macro definitions and #undefs in
972 /// the reverse order (the latest one is in the head of the list).
973 ///
974 /// This mapping lives within the \p CurSubmoduleState.
975 using MacroMap = llvm::DenseMap<const IdentifierInfo *, MacroState>;
976
977 struct SubmoduleState;
978
979 /// Information about a submodule that we're currently building.
980 struct BuildingSubmoduleInfo {
981 /// The module that we are building.
982 Module *M;
983
984 /// The location at which the module was included.
985 SourceLocation ImportLoc;
986
987 /// Whether we entered this submodule via a pragma.
988 bool IsPragma;
989
990 /// The previous SubmoduleState.
991 SubmoduleState *OuterSubmoduleState;
992
993 /// The number of pending module macro names when we started building this.
994 unsigned OuterPendingModuleMacroNames;
995
996 BuildingSubmoduleInfo(Module *M, SourceLocation ImportLoc, bool IsPragma,
997 SubmoduleState *OuterSubmoduleState,
998 unsigned OuterPendingModuleMacroNames)
999 : M(M), ImportLoc(ImportLoc), IsPragma(IsPragma),
1000 OuterSubmoduleState(OuterSubmoduleState),
1001 OuterPendingModuleMacroNames(OuterPendingModuleMacroNames) {}
1002 };
1003 SmallVector<BuildingSubmoduleInfo, 8> BuildingSubmoduleStack;
1004
1005 /// Information about a submodule's preprocessor state.
1006 struct SubmoduleState {
1007 /// The macros for the submodule.
1008 MacroMap Macros;
1009
1010 /// The set of modules that are visible within the submodule.
1011 VisibleModuleSet VisibleModules;
1012
1013 // FIXME: CounterValue?
1014 // FIXME: PragmaPushMacroInfo?
1015 };
1016 std::map<Module *, SubmoduleState> Submodules;
1017
1018 /// The preprocessor state for preprocessing outside of any submodule.
1019 SubmoduleState NullSubmoduleState;
1020
1021 /// The current submodule state. Will be \p NullSubmoduleState if we're not
1022 /// in a submodule.
1023 SubmoduleState *CurSubmoduleState;
1024
1025 /// The files that have been included.
1026 IncludedFilesSet IncludedFiles;
1027
1028 /// The set of top-level modules that affected preprocessing, but were not
1029 /// imported.
1030 llvm::SmallSetVector<Module *, 2> AffectingClangModules;
1031
1032 /// The set of known macros exported from modules.
1033 llvm::FoldingSet<ModuleMacro> ModuleMacros;
1034
1035 /// The names of potential module macros that we've not yet processed.
1036 llvm::SmallVector<IdentifierInfo *, 32> PendingModuleMacroNames;
1037
1038 /// The list of module macros, for each identifier, that are not overridden by
1039 /// any other module macro.
1040 llvm::DenseMap<const IdentifierInfo *, llvm::TinyPtrVector<ModuleMacro *>>
1041 LeafModuleMacros;
1042
1043 /// Macros that we want to warn because they are not used at the end
1044 /// of the translation unit.
1045 ///
1046 /// We store just their SourceLocations instead of
1047 /// something like MacroInfo*. The benefit of this is that when we are
1048 /// deserializing from PCH, we don't need to deserialize identifier & macros
1049 /// just so that we can report that they are unused, we just warn using
1050 /// the SourceLocations of this set (that will be filled by the ASTReader).
1051 using WarnUnusedMacroLocsTy = llvm::SmallDenseSet<SourceLocation, 32>;
1052 WarnUnusedMacroLocsTy WarnUnusedMacroLocs;
1053
1054 /// This is a pair of an optional message and source location used for pragmas
1055 /// that annotate macros like pragma clang restrict_expansion and pragma clang
1056 /// deprecated. This pair stores the optional message and the location of the
1057 /// annotation pragma for use producing diagnostics and notes.
1058 using MsgLocationPair = std::pair<std::string, SourceLocation>;
1059
1060 struct MacroAnnotationInfo {
1061 SourceLocation Location;
1062 std::string Message;
1063 };
1064
1065 struct MacroAnnotations {
1066 std::optional<MacroAnnotationInfo> DeprecationInfo;
1067 std::optional<MacroAnnotationInfo> RestrictExpansionInfo;
1068 std::optional<SourceLocation> FinalAnnotationLoc;
1069 };
1070
1071 /// Warning information for macro annotations.
1072 llvm::DenseMap<const IdentifierInfo *, MacroAnnotations> AnnotationInfos;
1073
1074 /// A "freelist" of MacroArg objects that can be
1075 /// reused for quick allocation.
1076 MacroArgs *MacroArgCache = nullptr;
1077
1078 /// For each IdentifierInfo used in a \#pragma push_macro directive,
1079 /// we keep a MacroInfo stack used to restore the previous macro value.
1080 llvm::DenseMap<IdentifierInfo *, std::vector<MacroInfo *>>
1081 PragmaPushMacroInfo;
1082
1083 // Various statistics we track for performance analysis.
1084 unsigned NumDirectives = 0;
1085 unsigned NumDefined = 0;
1086 unsigned NumUndefined = 0;
1087 unsigned NumPragma = 0;
1088 unsigned NumIf = 0;
1089 unsigned NumElse = 0;
1090 unsigned NumEndif = 0;
1091 unsigned NumEnteredSourceFiles = 0;
1092 unsigned MaxIncludeStackDepth = 0;
1093 unsigned NumMacroExpanded = 0;
1094 unsigned NumFnMacroExpanded = 0;
1095 unsigned NumBuiltinMacroExpanded = 0;
1096 unsigned NumFastMacroExpanded = 0;
1097 unsigned NumTokenPaste = 0;
1098 unsigned NumFastTokenPaste = 0;
1099 unsigned NumSkipped = 0;
1100
1101 /// The predefined macros that preprocessor should use from the
1102 /// command line etc.
1103 std::string Predefines;
1104
1105 /// The file ID for the preprocessor predefines.
1106 FileID PredefinesFileID;
1107
1108 /// The file ID for the PCH through header.
1109 FileID PCHThroughHeaderFileID;
1110
1111 /// Whether tokens are being skipped until a #pragma hdrstop is seen.
1112 bool SkippingUntilPragmaHdrStop = false;
1113
1114 /// Whether tokens are being skipped until the through header is seen.
1115 bool SkippingUntilPCHThroughHeader = false;
1116
1117 /// \{
1118 /// Cache of macro expanders to reduce malloc traffic.
1119 enum { TokenLexerCacheSize = 8 };
1120 unsigned NumCachedTokenLexers;
1121 std::unique_ptr<TokenLexer> TokenLexerCache[TokenLexerCacheSize];
1122 /// \}
1123
1124 /// Keeps macro expanded tokens for TokenLexers.
1125 //
1126 /// Works like a stack; a TokenLexer adds the macro expanded tokens that is
1127 /// going to lex in the cache and when it finishes the tokens are removed
1128 /// from the end of the cache.
1129 SmallVector<Token, 16> MacroExpandedTokens;
1130 std::vector<std::pair<TokenLexer *, size_t>> MacroExpandingLexersStack;
1131
1132 /// A record of the macro definitions and expansions that
1133 /// occurred during preprocessing.
1134 ///
1135 /// This is an optional side structure that can be enabled with
1136 /// \c createPreprocessingRecord() prior to preprocessing.
1137 PreprocessingRecord *Record = nullptr;
1138
1139 /// Cached tokens state.
1140 using CachedTokensTy = SmallVector<Token, 1>;
1141
1142 /// Cached tokens are stored here when we do backtracking or
1143 /// lookahead. They are "lexed" by the CachingLex() method.
1144 CachedTokensTy CachedTokens;
1145
1146 /// The position of the cached token that CachingLex() should
1147 /// "lex" next.
1148 ///
1149 /// If it points beyond the CachedTokens vector, it means that a normal
1150 /// Lex() should be invoked.
1151 CachedTokensTy::size_type CachedLexPos = 0;
1152
1153 /// Stack of backtrack positions, allowing nested backtracks.
1154 ///
1155 /// The EnableBacktrackAtThisPos() method pushes a position to
1156 /// indicate where CachedLexPos should be set when the BackTrack() method is
1157 /// invoked (at which point the last position is popped).
1158 std::vector<CachedTokensTy::size_type> BacktrackPositions;
1159
1160 /// Stack of cached tokens/initial number of cached tokens pairs, allowing
1161 /// nested unannotated backtracks.
1162 std::vector<std::pair<CachedTokensTy, CachedTokensTy::size_type>>
1163 UnannotatedBacktrackTokens;
1164
1165 /// True if \p Preprocessor::SkipExcludedConditionalBlock() is running.
1166 /// This is used to guard against calling this function recursively.
1167 ///
1168 /// See comments at the use-site for more context about why it is needed.
1169 bool SkippingExcludedConditionalBlock = false;
1170
1171 /// Keeps track of skipped range mappings that were recorded while skipping
1172 /// excluded conditional directives. It maps the source buffer pointer at
1173 /// the beginning of a skipped block, to the number of bytes that should be
1174 /// skipped.
1175 llvm::DenseMap<const char *, unsigned> RecordedSkippedRanges;
1176
1177 void updateOutOfDateIdentifier(const IdentifierInfo &II) const;
1178
1179public:
1180 Preprocessor(const PreprocessorOptions &PPOpts, DiagnosticsEngine &diags,
1181 const LangOptions &LangOpts, SourceManager &SM,
1182 HeaderSearch &Headers, ModuleLoader &TheModuleLoader,
1183 IdentifierInfoLookup *IILookup = nullptr,
1184 bool OwnsHeaderSearch = false,
1185 TranslationUnitKind TUKind = TU_Complete);
1186
1187 ~Preprocessor();
1188
1189 /// Initialize the preprocessor using information about the target.
1190 ///
1191 /// \param Target is owned by the caller and must remain valid for the
1192 /// lifetime of the preprocessor.
1193 /// \param AuxTarget is owned by the caller and must remain valid for
1194 /// the lifetime of the preprocessor.
1195 void Initialize(const TargetInfo &Target,
1196 const TargetInfo *AuxTarget = nullptr);
1197
1198 /// Initialize the preprocessor to parse a model file
1199 ///
1200 /// To parse model files the preprocessor of the original source is reused to
1201 /// preserver the identifier table. However to avoid some duplicate
1202 /// information in the preprocessor some cleanup is needed before it is used
1203 /// to parse model files. This method does that cleanup.
1204 void InitializeForModelFile();
1205
1206 /// Cleanup after model file parsing
1207 void FinalizeForModelFile();
1208
1209 /// Retrieve the preprocessor options used to initialize this preprocessor.
1210 const PreprocessorOptions &getPreprocessorOpts() const { return PPOpts; }
1211
1212 DiagnosticsEngine &getDiagnostics() const { return *Diags; }
1213 void setDiagnostics(DiagnosticsEngine &D) { Diags = &D; }
1214
1215 const LangOptions &getLangOpts() const { return LangOpts; }
1216 const TargetInfo &getTargetInfo() const { return *Target; }
1217 const TargetInfo *getAuxTargetInfo() const { return AuxTarget; }
1218 FileManager &getFileManager() const { return FileMgr; }
1219 SourceManager &getSourceManager() const { return SourceMgr; }
1220 HeaderSearch &getHeaderSearchInfo() const { return HeaderInfo; }
1221
1222 IdentifierTable &getIdentifierTable() { return Identifiers; }
1223 const IdentifierTable &getIdentifierTable() const { return Identifiers; }
1224 SelectorTable &getSelectorTable() { return Selectors; }
1225 Builtin::Context &getBuiltinInfo() { return *BuiltinInfo; }
1226 llvm::BumpPtrAllocator &getPreprocessorAllocator() { return BP; }
1227
1228 void setExternalSource(ExternalPreprocessorSource *Source) {
1229 ExternalSource = Source;
1230 }
1231
1232 ExternalPreprocessorSource *getExternalSource() const {
1233 return ExternalSource;
1234 }
1235
1236 /// Retrieve the module loader associated with this preprocessor.
1237 ModuleLoader &getModuleLoader() const { return TheModuleLoader; }
1238
1239 bool hadModuleLoaderFatalFailure() const {
1240 return TheModuleLoader.HadFatalFailure;
1241 }
1242
1243 /// Retrieve the number of Directives that have been processed by the
1244 /// Preprocessor.
1245 unsigned getNumDirectives() const {
1246 return NumDirectives;
1247 }
1248
1249 /// True if we are currently preprocessing a #if or #elif directive
1250 bool isParsingIfOrElifDirective() const {
1251 return ParsingIfOrElifDirective;
1252 }
1253
1254 /// Control whether the preprocessor retains comments in output.
1255 void SetCommentRetentionState(bool KeepComments, bool KeepMacroComments) {
1256 this->KeepComments = KeepComments | KeepMacroComments;
1257 this->KeepMacroComments = KeepMacroComments;
1258 }
1259
1260 bool getCommentRetentionState() const { return KeepComments; }
1261
1262 void setPragmasEnabled(bool Enabled) { PragmasEnabled = Enabled; }
1263 bool getPragmasEnabled() const { return PragmasEnabled; }
1264
1265 void SetSuppressIncludeNotFoundError(bool Suppress) {
1266 SuppressIncludeNotFoundError = Suppress;
1267 }
1268
1269 bool GetSuppressIncludeNotFoundError() {
1270 return SuppressIncludeNotFoundError;
1271 }
1272
1273 /// Sets whether the preprocessor is responsible for producing output or if
1274 /// it is producing tokens to be consumed by Parse and Sema.
1275 void setPreprocessedOutput(bool IsPreprocessedOutput) {
1276 PreprocessedOutput = IsPreprocessedOutput;
1277 }
1278
1279 /// Returns true if the preprocessor is responsible for generating output,
1280 /// false if it is producing tokens to be consumed by Parse and Sema.
1281 bool isPreprocessedOutput() const { return PreprocessedOutput; }
1282
1283 /// Return true if we are lexing directly from the specified lexer.
1284 bool isCurrentLexer(const PreprocessorLexer *L) const {
1285 return CurPPLexer == L;
1286 }
1287
1288 /// Return the current lexer being lexed from.
1289 ///
1290 /// Note that this ignores any potentially active macro expansions and _Pragma
1291 /// expansions going on at the time.
1292 PreprocessorLexer *getCurrentLexer() const { return CurPPLexer; }
1293
1294 /// Return the current file lexer being lexed from.
1295 ///
1296 /// Note that this ignores any potentially active macro expansions and _Pragma
1297 /// expansions going on at the time.
1298 PreprocessorLexer *getCurrentFileLexer() const;
1299
1300 /// Return the submodule owning the file being lexed. This may not be
1301 /// the current module if we have changed modules since entering the file.
1302 Module *getCurrentLexerSubmodule() const { return CurLexerSubmodule; }
1303
1304 /// Returns the FileID for the preprocessor predefines.
1305 FileID getPredefinesFileID() const { return PredefinesFileID; }
1306
1307 /// \{
1308 /// Accessors for preprocessor callbacks.
1309 ///
1310 /// Note that this class takes ownership of any PPCallbacks object given to
1311 /// it.
1312 PPCallbacks *getPPCallbacks() const { return Callbacks.get(); }
1313 void addPPCallbacks(std::unique_ptr<PPCallbacks> C) {
1314 if (Callbacks)
1315 C = std::make_unique<PPChainedCallbacks>(args: std::move(C),
1316 args: std::move(Callbacks));
1317 Callbacks = std::move(C);
1318 }
1319 /// \}
1320
1321 /// Get the number of tokens processed so far.
1322 unsigned getTokenCount() const { return TokenCount; }
1323
1324 /// Get the max number of tokens before issuing a -Wmax-tokens warning.
1325 unsigned getMaxTokens() const { return MaxTokens; }
1326
1327 void overrideMaxTokens(unsigned Value, SourceLocation Loc) {
1328 MaxTokens = Value;
1329 MaxTokensOverrideLoc = Loc;
1330 };
1331
1332 SourceLocation getMaxTokensOverrideLoc() const { return MaxTokensOverrideLoc; }
1333
1334 /// Register a function that would be called on each token in the final
1335 /// expanded token stream.
1336 /// This also reports annotation tokens produced by the parser.
1337 void setTokenWatcher(llvm::unique_function<void(const clang::Token &)> F) {
1338 OnToken = std::move(F);
1339 }
1340
1341 void setDependencyDirectivesGetter(DependencyDirectivesGetter &Get) {
1342 GetDependencyDirectives = &Get;
1343 }
1344
1345 void setPreprocessToken(bool Preprocess) { PreprocessToken = Preprocess; }
1346
1347 bool isMacroDefined(StringRef Id) {
1348 return isMacroDefined(&Identifiers.get(Id));
1349 }
1350 bool isMacroDefined(const IdentifierInfo *II) {
1351 return II->hasMacroDefinition() &&
1352 (!getLangOpts().Modules || (bool)getMacroDefinition(II));
1353 }
1354
1355 /// Determine whether II is defined as a macro within the module M,
1356 /// if that is a module that we've already preprocessed. Does not check for
1357 /// macros imported into M.
1358 bool isMacroDefinedInLocalModule(const IdentifierInfo *II, Module *M) {
1359 if (!II->hasMacroDefinition())
1360 return false;
1361 auto I = Submodules.find(x: M);
1362 if (I == Submodules.end())
1363 return false;
1364 auto J = I->second.Macros.find(Val: II);
1365 if (J == I->second.Macros.end())
1366 return false;
1367 auto *MD = J->second.getLatest();
1368 return MD && MD->isDefined();
1369 }
1370
1371 MacroDefinition getMacroDefinition(const IdentifierInfo *II) {
1372 if (!II->hasMacroDefinition())
1373 return {};
1374
1375 MacroState &S = CurSubmoduleState->Macros[II];
1376 auto *MD = S.getLatest();
1377 while (isa_and_nonnull<VisibilityMacroDirective>(Val: MD))
1378 MD = MD->getPrevious();
1379 return MacroDefinition(dyn_cast_or_null<DefMacroDirective>(Val: MD),
1380 S.getActiveModuleMacros(PP&: *this, II),
1381 S.isAmbiguous(PP&: *this, II));
1382 }
1383
1384 MacroDefinition getMacroDefinitionAtLoc(const IdentifierInfo *II,
1385 SourceLocation Loc) {
1386 if (!II->hadMacroDefinition())
1387 return {};
1388
1389 MacroState &S = CurSubmoduleState->Macros[II];
1390 MacroDirective::DefInfo DI;
1391 if (auto *MD = S.getLatest())
1392 DI = MD->findDirectiveAtLoc(L: Loc, SM: getSourceManager());
1393 // FIXME: Compute the set of active module macros at the specified location.
1394 return MacroDefinition(DI.getDirective(),
1395 S.getActiveModuleMacros(PP&: *this, II),
1396 S.isAmbiguous(PP&: *this, II));
1397 }
1398
1399 /// Given an identifier, return its latest non-imported MacroDirective
1400 /// if it is \#define'd and not \#undef'd, or null if it isn't \#define'd.
1401 MacroDirective *getLocalMacroDirective(const IdentifierInfo *II) const {
1402 if (!II->hasMacroDefinition())
1403 return nullptr;
1404
1405 auto *MD = getLocalMacroDirectiveHistory(II);
1406 if (!MD || MD->getDefinition().isUndefined())
1407 return nullptr;
1408
1409 return MD;
1410 }
1411
1412 const MacroInfo *getMacroInfo(const IdentifierInfo *II) const {
1413 return const_cast<Preprocessor*>(this)->getMacroInfo(II);
1414 }
1415
1416 MacroInfo *getMacroInfo(const IdentifierInfo *II) {
1417 if (!II->hasMacroDefinition())
1418 return nullptr;
1419 if (auto MD = getMacroDefinition(II))
1420 return MD.getMacroInfo();
1421 return nullptr;
1422 }
1423
1424 /// Given an identifier, return the latest non-imported macro
1425 /// directive for that identifier.
1426 ///
1427 /// One can iterate over all previous macro directives from the most recent
1428 /// one.
1429 MacroDirective *getLocalMacroDirectiveHistory(const IdentifierInfo *II) const;
1430
1431 /// Add a directive to the macro directive history for this identifier.
1432 void appendMacroDirective(IdentifierInfo *II, MacroDirective *MD);
1433 DefMacroDirective *appendDefMacroDirective(IdentifierInfo *II, MacroInfo *MI,
1434 SourceLocation Loc) {
1435 DefMacroDirective *MD = AllocateDefMacroDirective(MI, Loc);
1436 appendMacroDirective(II, MD);
1437 return MD;
1438 }
1439 DefMacroDirective *appendDefMacroDirective(IdentifierInfo *II,
1440 MacroInfo *MI) {
1441 return appendDefMacroDirective(II, MI, Loc: MI->getDefinitionLoc());
1442 }
1443
1444 /// Set a MacroDirective that was loaded from a PCH file.
1445 void setLoadedMacroDirective(IdentifierInfo *II, MacroDirective *ED,
1446 MacroDirective *MD);
1447
1448 /// Register an exported macro for a module and identifier.
1449 ModuleMacro *addModuleMacro(Module *Mod, IdentifierInfo *II,
1450 MacroInfo *Macro,
1451 ArrayRef<ModuleMacro *> Overrides, bool &IsNew);
1452 ModuleMacro *getModuleMacro(Module *Mod, const IdentifierInfo *II);
1453
1454 /// Get the list of leaf (non-overridden) module macros for a name.
1455 ArrayRef<ModuleMacro*> getLeafModuleMacros(const IdentifierInfo *II) const {
1456 if (II->isOutOfDate())
1457 updateOutOfDateIdentifier(II: *II);
1458 auto I = LeafModuleMacros.find(Val: II);
1459 if (I != LeafModuleMacros.end())
1460 return I->second;
1461 return {};
1462 }
1463
1464 /// Get the list of submodules that we're currently building.
1465 ArrayRef<BuildingSubmoduleInfo> getBuildingSubmodules() const {
1466 return BuildingSubmoduleStack;
1467 }
1468
1469 /// \{
1470 /// Iterators for the macro history table. Currently defined macros have
1471 /// IdentifierInfo::hasMacroDefinition() set and an empty
1472 /// MacroInfo::getUndefLoc() at the head of the list.
1473 using macro_iterator = MacroMap::const_iterator;
1474
1475 macro_iterator macro_begin(bool IncludeExternalMacros = true) const;
1476 macro_iterator macro_end(bool IncludeExternalMacros = true) const;
1477
1478 llvm::iterator_range<macro_iterator>
1479 macros(bool IncludeExternalMacros = true) const {
1480 macro_iterator begin = macro_begin(IncludeExternalMacros);
1481 macro_iterator end = macro_end(IncludeExternalMacros);
1482 return llvm::make_range(x: begin, y: end);
1483 }
1484
1485 /// \}
1486
1487 /// Mark the given clang module as affecting the current clang module or translation unit.
1488 void markClangModuleAsAffecting(Module *M) {
1489 assert(M->isModuleMapModule());
1490 if (!BuildingSubmoduleStack.empty()) {
1491 if (M != BuildingSubmoduleStack.back().M)
1492 BuildingSubmoduleStack.back().M->AffectingClangModules.insert(X: M);
1493 } else {
1494 AffectingClangModules.insert(X: M);
1495 }
1496 }
1497
1498 /// Get the set of top-level clang modules that affected preprocessing, but were not
1499 /// imported.
1500 const llvm::SmallSetVector<Module *, 2> &getAffectingClangModules() const {
1501 return AffectingClangModules;
1502 }
1503
1504 /// Mark the file as included.
1505 /// Returns true if this is the first time the file was included.
1506 bool markIncluded(FileEntryRef File) {
1507 HeaderInfo.getFileInfo(FE: File).IsLocallyIncluded = true;
1508 return IncludedFiles.insert(V: File).second;
1509 }
1510
1511 /// Return true if this header has already been included.
1512 bool alreadyIncluded(FileEntryRef File) const {
1513 HeaderInfo.getFileInfo(FE: File);
1514 return IncludedFiles.count(V: File);
1515 }
1516
1517 /// Get the set of included files.
1518 IncludedFilesSet &getIncludedFiles() { return IncludedFiles; }
1519 const IncludedFilesSet &getIncludedFiles() const { return IncludedFiles; }
1520
1521 /// Return the name of the macro defined before \p Loc that has
1522 /// spelling \p Tokens. If there are multiple macros with same spelling,
1523 /// return the last one defined.
1524 StringRef getLastMacroWithSpelling(SourceLocation Loc,
1525 ArrayRef<TokenValue> Tokens) const;
1526
1527 /// Get the predefines for this processor.
1528 /// Used by some third-party tools to inspect and add predefines (see
1529 /// https://github.com/llvm/llvm-project/issues/57483).
1530 const std::string &getPredefines() const { return Predefines; }
1531
1532 /// Set the predefines for this Preprocessor.
1533 ///
1534 /// These predefines are automatically injected when parsing the main file.
1535 void setPredefines(std::string P) { Predefines = std::move(P); }
1536
1537 /// Return information about the specified preprocessor
1538 /// identifier token.
1539 IdentifierInfo *getIdentifierInfo(StringRef Name) const {
1540 return &Identifiers.get(Name);
1541 }
1542
1543 /// Add the specified pragma handler to this preprocessor.
1544 ///
1545 /// If \p Namespace is non-null, then it is a token required to exist on the
1546 /// pragma line before the pragma string starts, e.g. "STDC" or "GCC".
1547 void AddPragmaHandler(StringRef Namespace, PragmaHandler *Handler);
1548 void AddPragmaHandler(PragmaHandler *Handler) {
1549 AddPragmaHandler(Namespace: StringRef(), Handler);
1550 }
1551
1552 /// Remove the specific pragma handler from this preprocessor.
1553 ///
1554 /// If \p Namespace is non-null, then it should be the namespace that
1555 /// \p Handler was added to. It is an error to remove a handler that
1556 /// has not been registered.
1557 void RemovePragmaHandler(StringRef Namespace, PragmaHandler *Handler);
1558 void RemovePragmaHandler(PragmaHandler *Handler) {
1559 RemovePragmaHandler(Namespace: StringRef(), Handler);
1560 }
1561
1562 /// Install empty handlers for all pragmas (making them ignored).
1563 void IgnorePragmas();
1564
1565 /// Set empty line handler.
1566 void setEmptylineHandler(EmptylineHandler *Handler) { Emptyline = Handler; }
1567
1568 EmptylineHandler *getEmptylineHandler() const { return Emptyline; }
1569
1570 /// Add the specified comment handler to the preprocessor.
1571 void addCommentHandler(CommentHandler *Handler);
1572
1573 /// Remove the specified comment handler.
1574 ///
1575 /// It is an error to remove a handler that has not been registered.
1576 void removeCommentHandler(CommentHandler *Handler);
1577
1578 /// Set the code completion handler to the given object.
1579 void setCodeCompletionHandler(CodeCompletionHandler &Handler) {
1580 CodeComplete = &Handler;
1581 }
1582
1583 /// Retrieve the current code-completion handler.
1584 CodeCompletionHandler *getCodeCompletionHandler() const {
1585 return CodeComplete;
1586 }
1587
1588 /// Clear out the code completion handler.
1589 void clearCodeCompletionHandler() {
1590 CodeComplete = nullptr;
1591 }
1592
1593 /// Hook used by the lexer to invoke the "included file" code
1594 /// completion point.
1595 void CodeCompleteIncludedFile(llvm::StringRef Dir, bool IsAngled);
1596
1597 /// Hook used by the lexer to invoke the "natural language" code
1598 /// completion point.
1599 void CodeCompleteNaturalLanguage();
1600
1601 /// Set the code completion token for filtering purposes.
1602 void setCodeCompletionIdentifierInfo(IdentifierInfo *Filter) {
1603 CodeCompletionII = Filter;
1604 }
1605
1606 /// Set the code completion token range for detecting replacement range later
1607 /// on.
1608 void setCodeCompletionTokenRange(const SourceLocation Start,
1609 const SourceLocation End) {
1610 CodeCompletionTokenRange = {Start, End};
1611 }
1612 SourceRange getCodeCompletionTokenRange() const {
1613 return CodeCompletionTokenRange;
1614 }
1615
1616 /// Get the code completion token for filtering purposes.
1617 StringRef getCodeCompletionFilter() {
1618 if (CodeCompletionII)
1619 return CodeCompletionII->getName();
1620 return {};
1621 }
1622
1623 /// Retrieve the preprocessing record, or NULL if there is no
1624 /// preprocessing record.
1625 PreprocessingRecord *getPreprocessingRecord() const { return Record; }
1626
1627 /// Create a new preprocessing record, which will keep track of
1628 /// all macro expansions, macro definitions, etc.
1629 void createPreprocessingRecord();
1630
1631 /// Returns true if the FileEntry is the PCH through header.
1632 bool isPCHThroughHeader(const FileEntry *FE);
1633
1634 /// True if creating a PCH with a through header.
1635 bool creatingPCHWithThroughHeader();
1636
1637 /// True if using a PCH with a through header.
1638 bool usingPCHWithThroughHeader();
1639
1640 /// True if creating a PCH with a #pragma hdrstop.
1641 bool creatingPCHWithPragmaHdrStop();
1642
1643 /// True if using a PCH with a #pragma hdrstop.
1644 bool usingPCHWithPragmaHdrStop();
1645
1646 /// Skip tokens until after the #include of the through header or
1647 /// until after a #pragma hdrstop.
1648 void SkipTokensWhileUsingPCH();
1649
1650 /// Process directives while skipping until the through header or
1651 /// #pragma hdrstop is found.
1652 void HandleSkippedDirectiveWhileUsingPCH(Token &Result,
1653 SourceLocation HashLoc);
1654
1655 /// Enter the specified FileID as the main source file,
1656 /// which implicitly adds the builtin defines etc.
1657 void EnterMainSourceFile();
1658
1659 /// Inform the preprocessor callbacks that processing is complete.
1660 void EndSourceFile();
1661
1662 /// Add a source file to the top of the include stack and
1663 /// start lexing tokens from it instead of the current buffer.
1664 ///
1665 /// Emits a diagnostic, doesn't enter the file, and returns true on error.
1666 bool EnterSourceFile(FileID FID, ConstSearchDirIterator Dir,
1667 SourceLocation Loc, bool IsFirstIncludeOfFile = true);
1668
1669 /// Add a Macro to the top of the include stack and start lexing
1670 /// tokens from it instead of the current buffer.
1671 ///
1672 /// \param Args specifies the tokens input to a function-like macro.
1673 /// \param ILEnd specifies the location of the ')' for a function-like macro
1674 /// or the identifier for an object-like macro.
1675 void EnterMacro(Token &Tok, SourceLocation ILEnd, MacroInfo *Macro,
1676 MacroArgs *Args);
1677
1678private:
1679 /// Add a "macro" context to the top of the include stack,
1680 /// which will cause the lexer to start returning the specified tokens.
1681 ///
1682 /// If \p DisableMacroExpansion is true, tokens lexed from the token stream
1683 /// will not be subject to further macro expansion. Otherwise, these tokens
1684 /// will be re-macro-expanded when/if expansion is enabled.
1685 ///
1686 /// If \p OwnsTokens is false, this method assumes that the specified stream
1687 /// of tokens has a permanent owner somewhere, so they do not need to be
1688 /// copied. If it is true, it assumes the array of tokens is allocated with
1689 /// \c new[] and the Preprocessor will delete[] it.
1690 ///
1691 /// If \p IsReinject the resulting tokens will have Token::IsReinjected flag
1692 /// set, see the flag documentation for details.
1693 void EnterTokenStream(const Token *Toks, unsigned NumToks,
1694 bool DisableMacroExpansion, bool OwnsTokens,
1695 bool IsReinject);
1696
1697public:
1698 void EnterTokenStream(std::unique_ptr<Token[]> Toks, unsigned NumToks,
1699 bool DisableMacroExpansion, bool IsReinject) {
1700 EnterTokenStream(Toks: Toks.release(), NumToks, DisableMacroExpansion, OwnsTokens: true,
1701 IsReinject);
1702 }
1703
1704 void EnterTokenStream(ArrayRef<Token> Toks, bool DisableMacroExpansion,
1705 bool IsReinject) {
1706 EnterTokenStream(Toks: Toks.data(), NumToks: Toks.size(), DisableMacroExpansion, OwnsTokens: false,
1707 IsReinject);
1708 }
1709
1710 /// Pop the current lexer/macro exp off the top of the lexer stack.
1711 ///
1712 /// This should only be used in situations where the current state of the
1713 /// top-of-stack lexer is known.
1714 void RemoveTopOfLexerStack();
1715
1716 /// From the point that this method is called, and until
1717 /// CommitBacktrackedTokens() or Backtrack() is called, the Preprocessor
1718 /// keeps track of the lexed tokens so that a subsequent Backtrack() call will
1719 /// make the Preprocessor re-lex the same tokens.
1720 ///
1721 /// Nested backtracks are allowed, meaning that EnableBacktrackAtThisPos can
1722 /// be called multiple times and CommitBacktrackedTokens/Backtrack calls will
1723 /// be combined with the EnableBacktrackAtThisPos calls in reverse order.
1724 ///
1725 /// NOTE: *DO NOT* forget to call either CommitBacktrackedTokens or Backtrack
1726 /// at some point after EnableBacktrackAtThisPos. If you don't, caching of
1727 /// tokens will continue indefinitely.
1728 ///
1729 /// \param Unannotated Whether token annotations are reverted upon calling
1730 /// Backtrack().
1731 void EnableBacktrackAtThisPos(bool Unannotated = false);
1732
1733private:
1734 std::pair<CachedTokensTy::size_type, bool> LastBacktrackPos();
1735
1736 CachedTokensTy PopUnannotatedBacktrackTokens();
1737
1738public:
1739 /// Disable the last EnableBacktrackAtThisPos call.
1740 void CommitBacktrackedTokens();
1741
1742 /// Make Preprocessor re-lex the tokens that were lexed since
1743 /// EnableBacktrackAtThisPos() was previously called.
1744 void Backtrack();
1745
1746 /// True if EnableBacktrackAtThisPos() was called and
1747 /// caching of tokens is on.
1748 bool isBacktrackEnabled() const { return !BacktrackPositions.empty(); }
1749
1750 /// True if EnableBacktrackAtThisPos() was called and
1751 /// caching of unannotated tokens is on.
1752 bool isUnannotatedBacktrackEnabled() const {
1753 return !UnannotatedBacktrackTokens.empty();
1754 }
1755
1756 /// Lex the next token for this preprocessor.
1757 void Lex(Token &Result);
1758
1759 /// Lex all tokens for this preprocessor until (and excluding) end of file.
1760 void LexTokensUntilEOF(std::vector<Token> *Tokens = nullptr);
1761
1762 /// Lex a token, forming a header-name token if possible.
1763 bool LexHeaderName(Token &Result, bool AllowMacroExpansion = true);
1764
1765 /// Lex the parameters for an #embed directive, returns nullopt on error.
1766 std::optional<LexEmbedParametersResult> LexEmbedParameters(Token &Current,
1767 bool ForHasEmbed);
1768
1769 bool LexAfterModuleImport(Token &Result);
1770 void CollectPpImportSuffix(SmallVectorImpl<Token> &Toks);
1771
1772 void makeModuleVisible(Module *M, SourceLocation Loc,
1773 bool IncludeExports = true);
1774
1775 SourceLocation getModuleImportLoc(Module *M) const {
1776 return CurSubmoduleState->VisibleModules.getImportLoc(M);
1777 }
1778
1779 /// Lex a string literal, which may be the concatenation of multiple
1780 /// string literals and may even come from macro expansion.
1781 /// \returns true on success, false if a error diagnostic has been generated.
1782 bool LexStringLiteral(Token &Result, std::string &String,
1783 const char *DiagnosticTag, bool AllowMacroExpansion) {
1784 if (AllowMacroExpansion)
1785 Lex(Result);
1786 else
1787 LexUnexpandedToken(Result);
1788 return FinishLexStringLiteral(Result, String, DiagnosticTag,
1789 AllowMacroExpansion);
1790 }
1791
1792 /// Complete the lexing of a string literal where the first token has
1793 /// already been lexed (see LexStringLiteral).
1794 bool FinishLexStringLiteral(Token &Result, std::string &String,
1795 const char *DiagnosticTag,
1796 bool AllowMacroExpansion);
1797
1798 /// Lex a token. If it's a comment, keep lexing until we get
1799 /// something not a comment.
1800 ///
1801 /// This is useful in -E -C mode where comments would foul up preprocessor
1802 /// directive handling.
1803 void LexNonComment(Token &Result) {
1804 do
1805 Lex(Result);
1806 while (Result.getKind() == tok::comment);
1807 }
1808
1809 /// Just like Lex, but disables macro expansion of identifier tokens.
1810 void LexUnexpandedToken(Token &Result) {
1811 // Disable macro expansion.
1812 bool OldVal = DisableMacroExpansion;
1813 DisableMacroExpansion = true;
1814 // Lex the token.
1815 Lex(Result);
1816
1817 // Reenable it.
1818 DisableMacroExpansion = OldVal;
1819 }
1820
1821 /// Like LexNonComment, but this disables macro expansion of
1822 /// identifier tokens.
1823 void LexUnexpandedNonComment(Token &Result) {
1824 do
1825 LexUnexpandedToken(Result);
1826 while (Result.getKind() == tok::comment);
1827 }
1828
1829 /// Parses a simple integer literal to get its numeric value. Floating
1830 /// point literals and user defined literals are rejected. Used primarily to
1831 /// handle pragmas that accept integer arguments.
1832 bool parseSimpleIntegerLiteral(Token &Tok, uint64_t &Value);
1833
1834 /// Disables macro expansion everywhere except for preprocessor directives.
1835 void SetMacroExpansionOnlyInDirectives() {
1836 DisableMacroExpansion = true;
1837 MacroExpansionInDirectivesOverride = true;
1838 }
1839
1840 /// Peeks ahead N tokens and returns that token without consuming any
1841 /// tokens.
1842 ///
1843 /// LookAhead(0) returns the next token that would be returned by Lex(),
1844 /// LookAhead(1) returns the token after it, etc. This returns normal
1845 /// tokens after phase 5. As such, it is equivalent to using
1846 /// 'Lex', not 'LexUnexpandedToken'.
1847 const Token &LookAhead(unsigned N) {
1848 assert(LexLevel == 0 && "cannot use lookahead while lexing");
1849 if (CachedLexPos + N < CachedTokens.size())
1850 return CachedTokens[CachedLexPos+N];
1851 else
1852 return PeekAhead(N: N+1);
1853 }
1854
1855 /// When backtracking is enabled and tokens are cached,
1856 /// this allows to revert a specific number of tokens.
1857 ///
1858 /// Note that the number of tokens being reverted should be up to the last
1859 /// backtrack position, not more.
1860 void RevertCachedTokens(unsigned N) {
1861 assert(isBacktrackEnabled() &&
1862 "Should only be called when tokens are cached for backtracking");
1863 assert(signed(CachedLexPos) - signed(N) >=
1864 signed(LastBacktrackPos().first) &&
1865 "Should revert tokens up to the last backtrack position, not more");
1866 assert(signed(CachedLexPos) - signed(N) >= 0 &&
1867 "Corrupted backtrack positions ?");
1868 CachedLexPos -= N;
1869 }
1870
1871 /// Enters a token in the token stream to be lexed next.
1872 ///
1873 /// If BackTrack() is called afterwards, the token will remain at the
1874 /// insertion point.
1875 /// If \p IsReinject is true, resulting token will have Token::IsReinjected
1876 /// flag set. See the flag documentation for details.
1877 void EnterToken(const Token &Tok, bool IsReinject) {
1878 if (LexLevel) {
1879 // It's not correct in general to enter caching lex mode while in the
1880 // middle of a nested lexing action.
1881 auto TokCopy = std::make_unique<Token[]>(num: 1);
1882 TokCopy[0] = Tok;
1883 EnterTokenStream(Toks: std::move(TokCopy), NumToks: 1, DisableMacroExpansion: true, IsReinject);
1884 } else {
1885 EnterCachingLexMode();
1886 assert(IsReinject && "new tokens in the middle of cached stream");
1887 CachedTokens.insert(I: CachedTokens.begin()+CachedLexPos, Elt: Tok);
1888 }
1889 }
1890
1891 /// We notify the Preprocessor that if it is caching tokens (because
1892 /// backtrack is enabled) it should replace the most recent cached tokens
1893 /// with the given annotation token. This function has no effect if
1894 /// backtracking is not enabled.
1895 ///
1896 /// Note that the use of this function is just for optimization, so that the
1897 /// cached tokens doesn't get re-parsed and re-resolved after a backtrack is
1898 /// invoked.
1899 void AnnotateCachedTokens(const Token &Tok) {
1900 assert(Tok.isAnnotation() && "Expected annotation token");
1901 if (CachedLexPos != 0 && isBacktrackEnabled())
1902 AnnotatePreviousCachedTokens(Tok);
1903 }
1904
1905 /// Get the location of the last cached token, suitable for setting the end
1906 /// location of an annotation token.
1907 SourceLocation getLastCachedTokenLocation() const {
1908 assert(CachedLexPos != 0);
1909 return CachedTokens[CachedLexPos-1].getLastLoc();
1910 }
1911
1912 /// Whether \p Tok is the most recent token (`CachedLexPos - 1`) in
1913 /// CachedTokens.
1914 bool IsPreviousCachedToken(const Token &Tok) const;
1915
1916 /// Replace token in `CachedLexPos - 1` in CachedTokens by the tokens
1917 /// in \p NewToks.
1918 ///
1919 /// Useful when a token needs to be split in smaller ones and CachedTokens
1920 /// most recent token must to be updated to reflect that.
1921 void ReplacePreviousCachedToken(ArrayRef<Token> NewToks);
1922
1923 /// Replace the last token with an annotation token.
1924 ///
1925 /// Like AnnotateCachedTokens(), this routine replaces an
1926 /// already-parsed (and resolved) token with an annotation
1927 /// token. However, this routine only replaces the last token with
1928 /// the annotation token; it does not affect any other cached
1929 /// tokens. This function has no effect if backtracking is not
1930 /// enabled.
1931 void ReplaceLastTokenWithAnnotation(const Token &Tok) {
1932 assert(Tok.isAnnotation() && "Expected annotation token");
1933 if (CachedLexPos != 0 && isBacktrackEnabled())
1934 CachedTokens[CachedLexPos-1] = Tok;
1935 }
1936
1937 /// Enter an annotation token into the token stream.
1938 void EnterAnnotationToken(SourceRange Range, tok::TokenKind Kind,
1939 void *AnnotationVal);
1940
1941 /// Determine whether it's possible for a future call to Lex to produce an
1942 /// annotation token created by a previous call to EnterAnnotationToken.
1943 bool mightHavePendingAnnotationTokens() {
1944 return CurLexerCallback != CLK_Lexer;
1945 }
1946
1947 /// Update the current token to represent the provided
1948 /// identifier, in order to cache an action performed by typo correction.
1949 void TypoCorrectToken(const Token &Tok) {
1950 assert(Tok.getIdentifierInfo() && "Expected identifier token");
1951 if (CachedLexPos != 0 && isBacktrackEnabled())
1952 CachedTokens[CachedLexPos-1] = Tok;
1953 }
1954
1955 /// Recompute the current lexer kind based on the CurLexer/
1956 /// CurTokenLexer pointers.
1957 void recomputeCurLexerKind();
1958
1959 /// Returns true if incremental processing is enabled
1960 bool isIncrementalProcessingEnabled() const { return IncrementalProcessing; }
1961
1962 /// Enables the incremental processing
1963 void enableIncrementalProcessing(bool value = true) {
1964 IncrementalProcessing = value;
1965 }
1966
1967 /// Specify the point at which code-completion will be performed.
1968 ///
1969 /// \param File the file in which code completion should occur. If
1970 /// this file is included multiple times, code-completion will
1971 /// perform completion the first time it is included. If NULL, this
1972 /// function clears out the code-completion point.
1973 ///
1974 /// \param Line the line at which code completion should occur
1975 /// (1-based).
1976 ///
1977 /// \param Column the column at which code completion should occur
1978 /// (1-based).
1979 ///
1980 /// \returns true if an error occurred, false otherwise.
1981 bool SetCodeCompletionPoint(FileEntryRef File, unsigned Line,
1982 unsigned Column);
1983
1984 /// Determine if we are performing code completion.
1985 bool isCodeCompletionEnabled() const { return CodeCompletionFile != nullptr; }
1986
1987 /// Returns the location of the code-completion point.
1988 ///
1989 /// Returns an invalid location if code-completion is not enabled or the file
1990 /// containing the code-completion point has not been lexed yet.
1991 SourceLocation getCodeCompletionLoc() const { return CodeCompletionLoc; }
1992
1993 /// Returns the start location of the file of code-completion point.
1994 ///
1995 /// Returns an invalid location if code-completion is not enabled or the file
1996 /// containing the code-completion point has not been lexed yet.
1997 SourceLocation getCodeCompletionFileLoc() const {
1998 return CodeCompletionFileLoc;
1999 }
2000
2001 /// Returns true if code-completion is enabled and we have hit the
2002 /// code-completion point.
2003 bool isCodeCompletionReached() const { return CodeCompletionReached; }
2004
2005 /// Note that we hit the code-completion point.
2006 void setCodeCompletionReached() {
2007 assert(isCodeCompletionEnabled() && "Code-completion not enabled!");
2008 CodeCompletionReached = true;
2009 // Silence any diagnostics that occur after we hit the code-completion.
2010 getDiagnostics().setSuppressAllDiagnostics(true);
2011 }
2012
2013 /// The location of the currently-active \#pragma clang
2014 /// arc_cf_code_audited begin.
2015 ///
2016 /// Returns an invalid location if there is no such pragma active.
2017 IdentifierLoc getPragmaARCCFCodeAuditedInfo() const {
2018 return PragmaARCCFCodeAuditedInfo;
2019 }
2020
2021 /// Set the location of the currently-active \#pragma clang
2022 /// arc_cf_code_audited begin. An invalid location ends the pragma.
2023 void setPragmaARCCFCodeAuditedInfo(IdentifierInfo *Ident,
2024 SourceLocation Loc) {
2025 PragmaARCCFCodeAuditedInfo = IdentifierLoc(Loc, Ident);
2026 }
2027
2028 /// The location of the currently-active \#pragma clang
2029 /// assume_nonnull begin.
2030 ///
2031 /// Returns an invalid location if there is no such pragma active.
2032 SourceLocation getPragmaAssumeNonNullLoc() const {
2033 return PragmaAssumeNonNullLoc;
2034 }
2035
2036 /// Set the location of the currently-active \#pragma clang
2037 /// assume_nonnull begin. An invalid location ends the pragma.
2038 void setPragmaAssumeNonNullLoc(SourceLocation Loc) {
2039 PragmaAssumeNonNullLoc = Loc;
2040 }
2041
2042 /// Get the location of the recorded unterminated \#pragma clang
2043 /// assume_nonnull begin in the preamble, if one exists.
2044 ///
2045 /// Returns an invalid location if the premable did not end with
2046 /// such a pragma active or if there is no recorded preamble.
2047 SourceLocation getPreambleRecordedPragmaAssumeNonNullLoc() const {
2048 return PreambleRecordedPragmaAssumeNonNullLoc;
2049 }
2050
2051 /// Record the location of the unterminated \#pragma clang
2052 /// assume_nonnull begin in the preamble.
2053 void setPreambleRecordedPragmaAssumeNonNullLoc(SourceLocation Loc) {
2054 PreambleRecordedPragmaAssumeNonNullLoc = Loc;
2055 }
2056
2057 /// Set the directory in which the main file should be considered
2058 /// to have been found, if it is not a real file.
2059 void setMainFileDir(DirectoryEntryRef Dir) { MainFileDir = Dir; }
2060
2061 /// Instruct the preprocessor to skip part of the main source file.
2062 ///
2063 /// \param Bytes The number of bytes in the preamble to skip.
2064 ///
2065 /// \param StartOfLine Whether skipping these bytes puts the lexer at the
2066 /// start of a line.
2067 void setSkipMainFilePreamble(unsigned Bytes, bool StartOfLine) {
2068 SkipMainFilePreamble.first = Bytes;
2069 SkipMainFilePreamble.second = StartOfLine;
2070 }
2071
2072 /// Forwarding function for diagnostics. This emits a diagnostic at
2073 /// the specified Token's location, translating the token's start
2074 /// position in the current buffer into a SourcePosition object for rendering.
2075 DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID) const {
2076 return Diags->Report(Loc, DiagID);
2077 }
2078
2079 DiagnosticBuilder Diag(const Token &Tok, unsigned DiagID) const {
2080 return Diags->Report(Loc: Tok.getLocation(), DiagID);
2081 }
2082
2083 /// Return the 'spelling' of the token at the given
2084 /// location; does not go up to the spelling location or down to the
2085 /// expansion location.
2086 ///
2087 /// \param buffer A buffer which will be used only if the token requires
2088 /// "cleaning", e.g. if it contains trigraphs or escaped newlines
2089 /// \param invalid If non-null, will be set \c true if an error occurs.
2090 StringRef getSpelling(SourceLocation loc,
2091 SmallVectorImpl<char> &buffer,
2092 bool *invalid = nullptr) const {
2093 return Lexer::getSpelling(loc, buffer, SM: SourceMgr, options: LangOpts, invalid);
2094 }
2095
2096 /// Return the 'spelling' of the Tok token.
2097 ///
2098 /// The spelling of a token is the characters used to represent the token in
2099 /// the source file after trigraph expansion and escaped-newline folding. In
2100 /// particular, this wants to get the true, uncanonicalized, spelling of
2101 /// things like digraphs, UCNs, etc.
2102 ///
2103 /// \param Invalid If non-null, will be set \c true if an error occurs.
2104 std::string getSpelling(const Token &Tok, bool *Invalid = nullptr) const {
2105 return Lexer::getSpelling(Tok, SourceMgr, LangOpts, Invalid);
2106 }
2107
2108 /// Get the spelling of a token into a preallocated buffer, instead
2109 /// of as an std::string.
2110 ///
2111 /// The caller is required to allocate enough space for the token, which is
2112 /// guaranteed to be at least Tok.getLength() bytes long. The length of the
2113 /// actual result is returned.
2114 ///
2115 /// Note that this method may do two possible things: it may either fill in
2116 /// the buffer specified with characters, or it may *change the input pointer*
2117 /// to point to a constant buffer with the data already in it (avoiding a
2118 /// copy). The caller is not allowed to modify the returned buffer pointer
2119 /// if an internal buffer is returned.
2120 unsigned getSpelling(const Token &Tok, const char *&Buffer,
2121 bool *Invalid = nullptr) const {
2122 return Lexer::getSpelling(Tok, Buffer, SourceMgr, LangOpts, Invalid);
2123 }
2124
2125 /// Get the spelling of a token into a SmallVector.
2126 ///
2127 /// Note that the returned StringRef may not point to the
2128 /// supplied buffer if a copy can be avoided.
2129 StringRef getSpelling(const Token &Tok,
2130 SmallVectorImpl<char> &Buffer,
2131 bool *Invalid = nullptr) const;
2132
2133 /// Relex the token at the specified location.
2134 /// \returns true if there was a failure, false on success.
2135 bool getRawToken(SourceLocation Loc, Token &Result,
2136 bool IgnoreWhiteSpace = false) {
2137 return Lexer::getRawToken(Loc, Result, SM: SourceMgr, LangOpts, IgnoreWhiteSpace);
2138 }
2139
2140 /// Given a Token \p Tok that is a numeric constant with length 1,
2141 /// return the value of constant as an unsigned 8-bit integer.
2142 uint8_t
2143 getSpellingOfSingleCharacterNumericConstant(const Token &Tok,
2144 bool *Invalid = nullptr) const {
2145 assert((Tok.is(tok::numeric_constant) || Tok.is(tok::binary_data)) &&
2146 Tok.getLength() == 1 && "Called on unsupported token");
2147 assert(!Tok.needsCleaning() && "Token can't need cleaning with length 1");
2148
2149 // If the token is carrying a literal data pointer, just use it.
2150 if (const char *D = Tok.getLiteralData())
2151 return (Tok.getKind() == tok::binary_data) ? *D : *D - '0';
2152
2153 assert(Tok.is(tok::numeric_constant) && "binary data with no data");
2154 // Otherwise, fall back on getCharacterData, which is slower, but always
2155 // works.
2156 return *SourceMgr.getCharacterData(SL: Tok.getLocation(), Invalid) - '0';
2157 }
2158
2159 /// Retrieve the name of the immediate macro expansion.
2160 ///
2161 /// This routine starts from a source location, and finds the name of the
2162 /// macro responsible for its immediate expansion. It looks through any
2163 /// intervening macro argument expansions to compute this. It returns a
2164 /// StringRef that refers to the SourceManager-owned buffer of the source
2165 /// where that macro name is spelled. Thus, the result shouldn't out-live
2166 /// the SourceManager.
2167 StringRef getImmediateMacroName(SourceLocation Loc) {
2168 return Lexer::getImmediateMacroName(Loc, SM: SourceMgr, LangOpts: getLangOpts());
2169 }
2170
2171 /// Plop the specified string into a scratch buffer and set the
2172 /// specified token's location and length to it.
2173 ///
2174 /// If specified, the source location provides a location of the expansion
2175 /// point of the token.
2176 void CreateString(StringRef Str, Token &Tok,
2177 SourceLocation ExpansionLocStart = SourceLocation(),
2178 SourceLocation ExpansionLocEnd = SourceLocation());
2179
2180 /// Split the first Length characters out of the token starting at TokLoc
2181 /// and return a location pointing to the split token. Re-lexing from the
2182 /// split token will return the split token rather than the original.
2183 SourceLocation SplitToken(SourceLocation TokLoc, unsigned Length);
2184
2185 /// Computes the source location just past the end of the
2186 /// token at this source location.
2187 ///
2188 /// This routine can be used to produce a source location that
2189 /// points just past the end of the token referenced by \p Loc, and
2190 /// is generally used when a diagnostic needs to point just after a
2191 /// token where it expected something different that it received. If
2192 /// the returned source location would not be meaningful (e.g., if
2193 /// it points into a macro), this routine returns an invalid
2194 /// source location.
2195 ///
2196 /// \param Offset an offset from the end of the token, where the source
2197 /// location should refer to. The default offset (0) produces a source
2198 /// location pointing just past the end of the token; an offset of 1 produces
2199 /// a source location pointing to the last character in the token, etc.
2200 SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset = 0) {
2201 return Lexer::getLocForEndOfToken(Loc, Offset, SM: SourceMgr, LangOpts);
2202 }
2203
2204 /// Returns true if the given MacroID location points at the first
2205 /// token of the macro expansion.
2206 ///
2207 /// \param MacroBegin If non-null and function returns true, it is set to
2208 /// begin location of the macro.
2209 bool isAtStartOfMacroExpansion(SourceLocation loc,
2210 SourceLocation *MacroBegin = nullptr) const {
2211 return Lexer::isAtStartOfMacroExpansion(loc, SM: SourceMgr, LangOpts,
2212 MacroBegin);
2213 }
2214
2215 /// Returns true if the given MacroID location points at the last
2216 /// token of the macro expansion.
2217 ///
2218 /// \param MacroEnd If non-null and function returns true, it is set to
2219 /// end location of the macro.
2220 bool isAtEndOfMacroExpansion(SourceLocation loc,
2221 SourceLocation *MacroEnd = nullptr) const {
2222 return Lexer::isAtEndOfMacroExpansion(loc, SM: SourceMgr, LangOpts, MacroEnd);
2223 }
2224
2225 /// Print the token to stderr, used for debugging.
2226 void DumpToken(const Token &Tok, bool DumpFlags = false) const;
2227 void DumpLocation(SourceLocation Loc) const;
2228 void DumpMacro(const MacroInfo &MI) const;
2229 void dumpMacroInfo(const IdentifierInfo *II);
2230
2231 /// Given a location that specifies the start of a
2232 /// token, return a new location that specifies a character within the token.
2233 SourceLocation AdvanceToTokenCharacter(SourceLocation TokStart,
2234 unsigned Char) const {
2235 return Lexer::AdvanceToTokenCharacter(TokStart, Characters: Char, SM: SourceMgr, LangOpts);
2236 }
2237
2238 /// Increment the counters for the number of token paste operations
2239 /// performed.
2240 ///
2241 /// If fast was specified, this is a 'fast paste' case we handled.
2242 void IncrementPasteCounter(bool isFast) {
2243 if (isFast)
2244 ++NumFastTokenPaste;
2245 else
2246 ++NumTokenPaste;
2247 }
2248
2249 void PrintStats();
2250
2251 size_t getTotalMemory() const;
2252
2253 /// When the macro expander pastes together a comment (/##/) in Microsoft
2254 /// mode, this method handles updating the current state, returning the
2255 /// token on the next source line.
2256 void HandleMicrosoftCommentPaste(Token &Tok);
2257
2258 //===--------------------------------------------------------------------===//
2259 // Preprocessor callback methods. These are invoked by a lexer as various
2260 // directives and events are found.
2261
2262 /// Given a tok::raw_identifier token, look up the
2263 /// identifier information for the token and install it into the token,
2264 /// updating the token kind accordingly.
2265 IdentifierInfo *LookUpIdentifierInfo(Token &Identifier) const;
2266
2267private:
2268 llvm::DenseMap<IdentifierInfo*,unsigned> PoisonReasons;
2269
2270public:
2271 /// Specifies the reason for poisoning an identifier.
2272 ///
2273 /// If that identifier is accessed while poisoned, then this reason will be
2274 /// used instead of the default "poisoned" diagnostic.
2275 void SetPoisonReason(IdentifierInfo *II, unsigned DiagID);
2276
2277 /// Display reason for poisoned identifier.
2278 void HandlePoisonedIdentifier(Token & Identifier);
2279
2280 void MaybeHandlePoisonedIdentifier(Token & Identifier) {
2281 if(IdentifierInfo * II = Identifier.getIdentifierInfo()) {
2282 if(II->isPoisoned()) {
2283 HandlePoisonedIdentifier(Identifier);
2284 }
2285 }
2286 }
2287
2288 /// Determine whether the next preprocessor token to be
2289 /// lexed is a '('. If so, consume the token and return true, if not, this
2290 /// method should have no observable side-effect on the lexed tokens.
2291 bool isNextPPTokenLParen();
2292
2293private:
2294 /// Identifiers used for SEH handling in Borland. These are only
2295 /// allowed in particular circumstances
2296 // __except block
2297 IdentifierInfo *Ident__exception_code,
2298 *Ident___exception_code,
2299 *Ident_GetExceptionCode;
2300 // __except filter expression
2301 IdentifierInfo *Ident__exception_info,
2302 *Ident___exception_info,
2303 *Ident_GetExceptionInfo;
2304 // __finally
2305 IdentifierInfo *Ident__abnormal_termination,
2306 *Ident___abnormal_termination,
2307 *Ident_AbnormalTermination;
2308
2309 const char *getCurLexerEndPos();
2310 void diagnoseMissingHeaderInUmbrellaDir(const Module &Mod);
2311
2312public:
2313 void PoisonSEHIdentifiers(bool Poison = true); // Borland
2314
2315 /// Callback invoked when the lexer reads an identifier and has
2316 /// filled in the tokens IdentifierInfo member.
2317 ///
2318 /// This callback potentially macro expands it or turns it into a named
2319 /// token (like 'for').
2320 ///
2321 /// \returns true if we actually computed a token, false if we need to
2322 /// lex again.
2323 bool HandleIdentifier(Token &Identifier);
2324
2325 /// Callback invoked when the lexer hits the end of the current file.
2326 ///
2327 /// This either returns the EOF token and returns true, or
2328 /// pops a level off the include stack and returns false, at which point the
2329 /// client should call lex again.
2330 bool HandleEndOfFile(Token &Result, bool isEndOfMacro = false);
2331
2332 /// Callback invoked when the current TokenLexer hits the end of its
2333 /// token stream.
2334 bool HandleEndOfTokenLexer(Token &Result);
2335
2336 /// Callback invoked when the lexer sees a # token at the start of a
2337 /// line.
2338 ///
2339 /// This consumes the directive, modifies the lexer/preprocessor state, and
2340 /// advances the lexer(s) so that the next token read is the correct one.
2341 void HandleDirective(Token &Result);
2342
2343 /// Ensure that the next token is a tok::eod token.
2344 ///
2345 /// If not, emit a diagnostic and consume up until the eod.
2346 /// If \p EnableMacros is true, then we consider macros that expand to zero
2347 /// tokens as being ok.
2348 ///
2349 /// \return The location of the end of the directive (the terminating
2350 /// newline).
2351 SourceLocation CheckEndOfDirective(const char *DirType,
2352 bool EnableMacros = false);
2353
2354 /// Read and discard all tokens remaining on the current line until
2355 /// the tok::eod token is found. Returns the range of the skipped tokens.
2356 SourceRange DiscardUntilEndOfDirective() {
2357 Token Tmp;
2358 return DiscardUntilEndOfDirective(Tok&: Tmp);
2359 }
2360
2361 /// Same as above except retains the token that was found.
2362 SourceRange DiscardUntilEndOfDirective(Token &Tok);
2363
2364 /// Returns true if the preprocessor has seen a use of
2365 /// __DATE__ or __TIME__ in the file so far.
2366 bool SawDateOrTime() const {
2367 return DATELoc != SourceLocation() || TIMELoc != SourceLocation();
2368 }
2369 unsigned getCounterValue() const { return CounterValue; }
2370 void setCounterValue(unsigned V) { CounterValue = V; }
2371
2372 LangOptions::FPEvalMethodKind getCurrentFPEvalMethod() const {
2373 assert(CurrentFPEvalMethod != LangOptions::FEM_UnsetOnCommandLine &&
2374 "FPEvalMethod should be set either from command line or from the "
2375 "target info");
2376 return CurrentFPEvalMethod;
2377 }
2378
2379 LangOptions::FPEvalMethodKind getTUFPEvalMethod() const {
2380 return TUFPEvalMethod;
2381 }
2382
2383 SourceLocation getLastFPEvalPragmaLocation() const {
2384 return LastFPEvalPragmaLocation;
2385 }
2386
2387 void setCurrentFPEvalMethod(SourceLocation PragmaLoc,
2388 LangOptions::FPEvalMethodKind Val) {
2389 assert(Val != LangOptions::FEM_UnsetOnCommandLine &&
2390 "FPEvalMethod should never be set to FEM_UnsetOnCommandLine");
2391 // This is the location of the '#pragma float_control" where the
2392 // execution state is modifed.
2393 LastFPEvalPragmaLocation = PragmaLoc;
2394 CurrentFPEvalMethod = Val;
2395 TUFPEvalMethod = Val;
2396 }
2397
2398 void setTUFPEvalMethod(LangOptions::FPEvalMethodKind Val) {
2399 assert(Val != LangOptions::FEM_UnsetOnCommandLine &&
2400 "TUPEvalMethod should never be set to FEM_UnsetOnCommandLine");
2401 TUFPEvalMethod = Val;
2402 }
2403
2404 /// Retrieves the module that we're currently building, if any.
2405 Module *getCurrentModule();
2406
2407 /// Retrieves the module whose implementation we're current compiling, if any.
2408 Module *getCurrentModuleImplementation();
2409
2410 /// If we are preprocessing a named module.
2411 bool isInNamedModule() const { return ModuleDeclState.isNamedModule(); }
2412
2413 /// If we are proprocessing a named interface unit.
2414 /// Note that a module implementation partition is not considered as an
2415 /// named interface unit here although it is importable
2416 /// to ease the parsing.
2417 bool isInNamedInterfaceUnit() const {
2418 return ModuleDeclState.isNamedInterface();
2419 }
2420
2421 /// Get the named module name we're preprocessing.
2422 /// Requires we're preprocessing a named module.
2423 StringRef getNamedModuleName() const { return ModuleDeclState.getName(); }
2424
2425 /// If we are implementing an implementation module unit.
2426 /// Note that the module implementation partition is not considered as an
2427 /// implementation unit.
2428 bool isInImplementationUnit() const {
2429 return ModuleDeclState.isImplementationUnit();
2430 }
2431
2432 /// If we're importing a standard C++20 Named Modules.
2433 bool isInImportingCXXNamedModules() const {
2434 // NamedModuleImportPath will be non-empty only if we're importing
2435 // Standard C++ named modules.
2436 return !NamedModuleImportPath.empty() && getLangOpts().CPlusPlusModules &&
2437 !IsAtImport;
2438 }
2439
2440 /// Allocate a new MacroInfo object with the provided SourceLocation.
2441 MacroInfo *AllocateMacroInfo(SourceLocation L);
2442
2443 /// Turn the specified lexer token into a fully checked and spelled
2444 /// filename, e.g. as an operand of \#include.
2445 ///
2446 /// The caller is expected to provide a buffer that is large enough to hold
2447 /// the spelling of the filename, but is also expected to handle the case
2448 /// when this method decides to use a different buffer.
2449 ///
2450 /// \returns true if the input filename was in <>'s or false if it was
2451 /// in ""'s.
2452 bool GetIncludeFilenameSpelling(SourceLocation Loc,StringRef &Buffer);
2453
2454 /// Given a "foo" or \<foo> reference, look up the indicated file.
2455 ///
2456 /// Returns std::nullopt on failure. \p isAngled indicates whether the file
2457 /// reference is for system \#include's or not (i.e. using <> instead of "").
2458 OptionalFileEntryRef
2459 LookupFile(SourceLocation FilenameLoc, StringRef Filename, bool isAngled,
2460 ConstSearchDirIterator FromDir, const FileEntry *FromFile,
2461 ConstSearchDirIterator *CurDir, SmallVectorImpl<char> *SearchPath,
2462 SmallVectorImpl<char> *RelativePath,
2463 ModuleMap::KnownHeader *SuggestedModule, bool *IsMapped,
2464 bool *IsFrameworkFound, bool SkipCache = false,
2465 bool OpenFile = true, bool CacheFailures = true);
2466
2467 /// Given a "Filename" or \<Filename> reference, look up the indicated embed
2468 /// resource. \p isAngled indicates whether the file reference is for
2469 /// system \#include's or not (i.e. using <> instead of ""). If \p OpenFile
2470 /// is true, the file looked up is opened for reading, otherwise it only
2471 /// validates that the file exists. Quoted filenames are looked up relative
2472 /// to \p LookupFromFile if it is nonnull.
2473 ///
2474 /// Returns std::nullopt on failure.
2475 OptionalFileEntryRef
2476 LookupEmbedFile(StringRef Filename, bool isAngled, bool OpenFile,
2477 const FileEntry *LookupFromFile = nullptr);
2478
2479 /// Return true if we're in the top-level file, not in a \#include.
2480 bool isInPrimaryFile() const;
2481
2482 /// Lex an on-off-switch (C99 6.10.6p2) and verify that it is
2483 /// followed by EOD. Return true if the token is not a valid on-off-switch.
2484 bool LexOnOffSwitch(tok::OnOffSwitch &Result);
2485
2486 bool CheckMacroName(Token &MacroNameTok, MacroUse isDefineUndef,
2487 bool *ShadowFlag = nullptr);
2488
2489 void EnterSubmodule(Module *M, SourceLocation ImportLoc, bool ForPragma);
2490 Module *LeaveSubmodule(bool ForPragma);
2491
2492private:
2493 friend void TokenLexer::ExpandFunctionArguments();
2494
2495 void PushIncludeMacroStack() {
2496 assert(CurLexerCallback != CLK_CachingLexer &&
2497 "cannot push a caching lexer");
2498 IncludeMacroStack.emplace_back(args&: CurLexerCallback, args&: CurLexerSubmodule,
2499 args: std::move(CurLexer), args&: CurPPLexer,
2500 args: std::move(CurTokenLexer), args&: CurDirLookup);
2501 CurPPLexer = nullptr;
2502 }
2503
2504 void PopIncludeMacroStack() {
2505 CurLexer = std::move(IncludeMacroStack.back().TheLexer);
2506 CurPPLexer = IncludeMacroStack.back().ThePPLexer;
2507 CurTokenLexer = std::move(IncludeMacroStack.back().TheTokenLexer);
2508 CurDirLookup = IncludeMacroStack.back().TheDirLookup;
2509 CurLexerSubmodule = IncludeMacroStack.back().TheSubmodule;
2510 CurLexerCallback = IncludeMacroStack.back().CurLexerCallback;
2511 IncludeMacroStack.pop_back();
2512 }
2513
2514 void PropagateLineStartLeadingSpaceInfo(Token &Result);
2515
2516 /// Determine whether we need to create module macros for #defines in the
2517 /// current context.
2518 bool needModuleMacros() const;
2519
2520 /// Update the set of active module macros and ambiguity flag for a module
2521 /// macro name.
2522 void updateModuleMacroInfo(const IdentifierInfo *II, ModuleMacroInfo &Info);
2523
2524 DefMacroDirective *AllocateDefMacroDirective(MacroInfo *MI,
2525 SourceLocation Loc);
2526 UndefMacroDirective *AllocateUndefMacroDirective(SourceLocation UndefLoc);
2527 VisibilityMacroDirective *AllocateVisibilityMacroDirective(SourceLocation Loc,
2528 bool isPublic);
2529
2530 /// Lex and validate a macro name, which occurs after a
2531 /// \#define or \#undef.
2532 ///
2533 /// \param MacroNameTok Token that represents the name defined or undefined.
2534 /// \param IsDefineUndef Kind if preprocessor directive.
2535 /// \param ShadowFlag Points to flag that is set if macro name shadows
2536 /// a keyword.
2537 ///
2538 /// This emits a diagnostic, sets the token kind to eod,
2539 /// and discards the rest of the macro line if the macro name is invalid.
2540 void ReadMacroName(Token &MacroNameTok, MacroUse IsDefineUndef = MU_Other,
2541 bool *ShadowFlag = nullptr);
2542
2543 /// ReadOptionalMacroParameterListAndBody - This consumes all (i.e. the
2544 /// entire line) of the macro's tokens and adds them to MacroInfo, and while
2545 /// doing so performs certain validity checks including (but not limited to):
2546 /// - # (stringization) is followed by a macro parameter
2547 /// \param MacroNameTok - Token that represents the macro name
2548 /// \param ImmediatelyAfterHeaderGuard - Macro follows an #ifdef header guard
2549 ///
2550 /// Either returns a pointer to a MacroInfo object OR emits a diagnostic and
2551 /// returns a nullptr if an invalid sequence of tokens is encountered.
2552 MacroInfo *ReadOptionalMacroParameterListAndBody(
2553 const Token &MacroNameTok, bool ImmediatelyAfterHeaderGuard);
2554
2555 /// The ( starting an argument list of a macro definition has just been read.
2556 /// Lex the rest of the parameters and the closing ), updating \p MI with
2557 /// what we learn and saving in \p LastTok the last token read.
2558 /// Return true if an error occurs parsing the arg list.
2559 bool ReadMacroParameterList(MacroInfo *MI, Token& LastTok);
2560
2561 /// Provide a suggestion for a typoed directive. If there is no typo, then
2562 /// just skip suggesting.
2563 ///
2564 /// \param Tok - Token that represents the directive
2565 /// \param Directive - String reference for the directive name
2566 void SuggestTypoedDirective(const Token &Tok, StringRef Directive) const;
2567
2568 /// We just read a \#if or related directive and decided that the
2569 /// subsequent tokens are in the \#if'd out portion of the
2570 /// file. Lex the rest of the file, until we see an \#endif. If \p
2571 /// FoundNonSkipPortion is true, then we have already emitted code for part of
2572 /// this \#if directive, so \#else/\#elif blocks should never be entered. If
2573 /// \p FoundElse is false, then \#else directives are ok, if not, then we have
2574 /// already seen one so a \#else directive is a duplicate. When this returns,
2575 /// the caller can lex the first valid token.
2576 void SkipExcludedConditionalBlock(SourceLocation HashTokenLoc,
2577 SourceLocation IfTokenLoc,
2578 bool FoundNonSkipPortion, bool FoundElse,
2579 SourceLocation ElseLoc = SourceLocation());
2580
2581 /// Information about the result for evaluating an expression for a
2582 /// preprocessor directive.
2583 struct DirectiveEvalResult {
2584 /// The integral value of the expression.
2585 std::optional<llvm::APSInt> Value;
2586
2587 /// Whether the expression was evaluated as true or not.
2588 bool Conditional;
2589
2590 /// True if the expression contained identifiers that were undefined.
2591 bool IncludedUndefinedIds;
2592
2593 /// The source range for the expression.
2594 SourceRange ExprRange;
2595 };
2596
2597 /// Evaluate an integer constant expression that may occur after a
2598 /// \#if or \#elif directive and return a \p DirectiveEvalResult object.
2599 ///
2600 /// If the expression is equivalent to "!defined(X)" return X in IfNDefMacro.
2601 DirectiveEvalResult EvaluateDirectiveExpression(IdentifierInfo *&IfNDefMacro,
2602 bool CheckForEoD = true);
2603
2604 /// Evaluate an integer constant expression that may occur after a
2605 /// \#if or \#elif directive and return a \p DirectiveEvalResult object.
2606 ///
2607 /// If the expression is equivalent to "!defined(X)" return X in IfNDefMacro.
2608 /// \p EvaluatedDefined will contain the result of whether "defined" appeared
2609 /// in the evaluated expression or not.
2610 DirectiveEvalResult EvaluateDirectiveExpression(IdentifierInfo *&IfNDefMacro,
2611 Token &Tok,
2612 bool &EvaluatedDefined,
2613 bool CheckForEoD = true);
2614
2615 /// Process a '__has_embed("path" [, ...])' expression.
2616 ///
2617 /// Returns predefined `__STDC_EMBED_*` macro values if
2618 /// successful.
2619 EmbedResult EvaluateHasEmbed(Token &Tok, IdentifierInfo *II);
2620
2621 /// Process a '__has_include("path")' expression.
2622 ///
2623 /// Returns true if successful.
2624 bool EvaluateHasInclude(Token &Tok, IdentifierInfo *II);
2625
2626 /// Process '__has_include_next("path")' expression.
2627 ///
2628 /// Returns true if successful.
2629 bool EvaluateHasIncludeNext(Token &Tok, IdentifierInfo *II);
2630
2631 /// Get the directory and file from which to start \#include_next lookup.
2632 std::pair<ConstSearchDirIterator, const FileEntry *>
2633 getIncludeNextStart(const Token &IncludeNextTok) const;
2634
2635 /// Install the standard preprocessor pragmas:
2636 /// \#pragma GCC poison/system_header/dependency and \#pragma once.
2637 void RegisterBuiltinPragmas();
2638
2639 /// RegisterBuiltinMacro - Register the specified identifier in the identifier
2640 /// table and mark it as a builtin macro to be expanded.
2641 IdentifierInfo *RegisterBuiltinMacro(const char *Name) {
2642 // Get the identifier.
2643 IdentifierInfo *Id = getIdentifierInfo(Name);
2644
2645 // Mark it as being a macro that is builtin.
2646 MacroInfo *MI = AllocateMacroInfo(L: SourceLocation());
2647 MI->setIsBuiltinMacro();
2648 appendDefMacroDirective(II: Id, MI);
2649 return Id;
2650 }
2651
2652 /// Register builtin macros such as __LINE__ with the identifier table.
2653 void RegisterBuiltinMacros();
2654
2655 /// If an identifier token is read that is to be expanded as a macro, handle
2656 /// it and return the next token as 'Tok'. If we lexed a token, return true;
2657 /// otherwise the caller should lex again.
2658 bool HandleMacroExpandedIdentifier(Token &Identifier, const MacroDefinition &MD);
2659
2660 /// Cache macro expanded tokens for TokenLexers.
2661 //
2662 /// Works like a stack; a TokenLexer adds the macro expanded tokens that is
2663 /// going to lex in the cache and when it finishes the tokens are removed
2664 /// from the end of the cache.
2665 Token *cacheMacroExpandedTokens(TokenLexer *tokLexer,
2666 ArrayRef<Token> tokens);
2667
2668 void removeCachedMacroExpandedTokensOfLastLexer();
2669
2670 /// After reading "MACRO(", this method is invoked to read all of the formal
2671 /// arguments specified for the macro invocation. Returns null on error.
2672 MacroArgs *ReadMacroCallArgumentList(Token &MacroName, MacroInfo *MI,
2673 SourceLocation &MacroEnd);
2674
2675 /// If an identifier token is read that is to be expanded
2676 /// as a builtin macro, handle it and return the next token as 'Tok'.
2677 void ExpandBuiltinMacro(Token &Tok);
2678
2679 /// Read a \c _Pragma directive, slice it up, process it, then
2680 /// return the first token after the directive.
2681 /// This assumes that the \c _Pragma token has just been read into \p Tok.
2682 void Handle_Pragma(Token &Tok);
2683
2684 /// Like Handle_Pragma except the pragma text is not enclosed within
2685 /// a string literal.
2686 void HandleMicrosoft__pragma(Token &Tok);
2687
2688 /// Add a lexer to the top of the include stack and
2689 /// start lexing tokens from it instead of the current buffer.
2690 void EnterSourceFileWithLexer(Lexer *TheLexer, ConstSearchDirIterator Dir);
2691
2692 /// Set the FileID for the preprocessor predefines.
2693 void setPredefinesFileID(FileID FID) {
2694 assert(PredefinesFileID.isInvalid() && "PredefinesFileID already set!");
2695 PredefinesFileID = FID;
2696 }
2697
2698 /// Set the FileID for the PCH through header.
2699 void setPCHThroughHeaderFileID(FileID FID);
2700
2701 /// Returns true if we are lexing from a file and not a
2702 /// pragma or a macro.
2703 static bool IsFileLexer(const Lexer* L, const PreprocessorLexer* P) {
2704 return L ? !L->isPragmaLexer() : P != nullptr;
2705 }
2706
2707 static bool IsFileLexer(const IncludeStackInfo& I) {
2708 return IsFileLexer(L: I.TheLexer.get(), P: I.ThePPLexer);
2709 }
2710
2711 bool IsFileLexer() const {
2712 return IsFileLexer(L: CurLexer.get(), P: CurPPLexer);
2713 }
2714
2715 //===--------------------------------------------------------------------===//
2716 // Standard Library Identification
2717 std::optional<CXXStandardLibraryVersionInfo> CXXStandardLibraryVersion;
2718
2719public:
2720 std::optional<std::uint64_t> getStdLibCxxVersion();
2721 bool NeedsStdLibCxxWorkaroundBefore(std::uint64_t FixedVersion);
2722
2723private:
2724 //===--------------------------------------------------------------------===//
2725 // Caching stuff.
2726 void CachingLex(Token &Result);
2727
2728 bool InCachingLexMode() const {
2729 // If the Lexer pointers are 0 and IncludeMacroStack is empty, it means
2730 // that we are past EOF, not that we are in CachingLex mode.
2731 return !CurPPLexer && !CurTokenLexer && !IncludeMacroStack.empty();
2732 }
2733
2734 void EnterCachingLexMode();
2735 void EnterCachingLexModeUnchecked();
2736
2737 void ExitCachingLexMode() {
2738 if (InCachingLexMode())
2739 RemoveTopOfLexerStack();
2740 }
2741
2742 const Token &PeekAhead(unsigned N);
2743 void AnnotatePreviousCachedTokens(const Token &Tok);
2744
2745 //===--------------------------------------------------------------------===//
2746 /// Handle*Directive - implement the various preprocessor directives. These
2747 /// should side-effect the current preprocessor object so that the next call
2748 /// to Lex() will return the appropriate token next.
2749 void HandleLineDirective();
2750 void HandleDigitDirective(Token &Tok);
2751 void HandleUserDiagnosticDirective(Token &Tok, bool isWarning);
2752 void HandleIdentSCCSDirective(Token &Tok);
2753 void HandleMacroPublicDirective(Token &Tok);
2754 void HandleMacroPrivateDirective();
2755
2756 /// An additional notification that can be produced by a header inclusion or
2757 /// import to tell the parser what happened.
2758 struct ImportAction {
2759 enum ActionKind {
2760 None,
2761 ModuleBegin,
2762 ModuleImport,
2763 HeaderUnitImport,
2764 SkippedModuleImport,
2765 Failure,
2766 } Kind;
2767 Module *ModuleForHeader = nullptr;
2768
2769 ImportAction(ActionKind AK, Module *Mod = nullptr)
2770 : Kind(AK), ModuleForHeader(Mod) {
2771 assert((AK == None || Mod || AK == Failure) &&
2772 "no module for module action");
2773 }
2774 };
2775
2776 OptionalFileEntryRef LookupHeaderIncludeOrImport(
2777 ConstSearchDirIterator *CurDir, StringRef &Filename,
2778 SourceLocation FilenameLoc, CharSourceRange FilenameRange,
2779 const Token &FilenameTok, bool &IsFrameworkFound, bool IsImportDecl,
2780 bool &IsMapped, ConstSearchDirIterator LookupFrom,
2781 const FileEntry *LookupFromFile, StringRef &LookupFilename,
2782 SmallVectorImpl<char> &RelativePath, SmallVectorImpl<char> &SearchPath,
2783 ModuleMap::KnownHeader &SuggestedModule, bool isAngled);
2784 // Binary data inclusion
2785 void HandleEmbedDirective(SourceLocation HashLoc, Token &Tok,
2786 const FileEntry *LookupFromFile = nullptr);
2787 void HandleEmbedDirectiveImpl(SourceLocation HashLoc,
2788 const LexEmbedParametersResult &Params,
2789 StringRef BinaryContents, StringRef FileName);
2790
2791 // File inclusion.
2792 void HandleIncludeDirective(SourceLocation HashLoc, Token &Tok,
2793 ConstSearchDirIterator LookupFrom = nullptr,
2794 const FileEntry *LookupFromFile = nullptr);
2795 ImportAction
2796 HandleHeaderIncludeOrImport(SourceLocation HashLoc, Token &IncludeTok,
2797 Token &FilenameTok, SourceLocation EndLoc,
2798 ConstSearchDirIterator LookupFrom = nullptr,
2799 const FileEntry *LookupFromFile = nullptr);
2800 void HandleIncludeNextDirective(SourceLocation HashLoc, Token &Tok);
2801 void HandleIncludeMacrosDirective(SourceLocation HashLoc, Token &Tok);
2802 void HandleImportDirective(SourceLocation HashLoc, Token &Tok);
2803 void HandleMicrosoftImportDirective(Token &Tok);
2804
2805public:
2806 /// Check that the given module is available, producing a diagnostic if not.
2807 /// \return \c true if the check failed (because the module is not available).
2808 /// \c false if the module appears to be usable.
2809 static bool checkModuleIsAvailable(const LangOptions &LangOpts,
2810 const TargetInfo &TargetInfo,
2811 const Module &M, DiagnosticsEngine &Diags);
2812
2813 // Module inclusion testing.
2814 /// Find the module that owns the source or header file that
2815 /// \p Loc points to. If the location is in a file that was included
2816 /// into a module, or is outside any module, returns nullptr.
2817 Module *getModuleForLocation(SourceLocation Loc, bool AllowTextual);
2818
2819 /// We want to produce a diagnostic at location IncLoc concerning an
2820 /// unreachable effect at location MLoc (eg, where a desired entity was
2821 /// declared or defined). Determine whether the right way to make MLoc
2822 /// reachable is by #include, and if so, what header should be included.
2823 ///
2824 /// This is not necessarily fast, and might load unexpected module maps, so
2825 /// should only be called by code that intends to produce an error.
2826 ///
2827 /// \param IncLoc The location at which the missing effect was detected.
2828 /// \param MLoc A location within an unimported module at which the desired
2829 /// effect occurred.
2830 /// \return A file that can be #included to provide the desired effect. Null
2831 /// if no such file could be determined or if a #include is not
2832 /// appropriate (eg, if a module should be imported instead).
2833 OptionalFileEntryRef getHeaderToIncludeForDiagnostics(SourceLocation IncLoc,
2834 SourceLocation MLoc);
2835
2836 bool isRecordingPreamble() const {
2837 return PreambleConditionalStack.isRecording();
2838 }
2839
2840 bool hasRecordedPreamble() const {
2841 return PreambleConditionalStack.hasRecordedPreamble();
2842 }
2843
2844 ArrayRef<PPConditionalInfo> getPreambleConditionalStack() const {
2845 return PreambleConditionalStack.getStack();
2846 }
2847
2848 void setRecordedPreambleConditionalStack(ArrayRef<PPConditionalInfo> s) {
2849 PreambleConditionalStack.setStack(s);
2850 }
2851
2852 void setReplayablePreambleConditionalStack(
2853 ArrayRef<PPConditionalInfo> s, std::optional<PreambleSkipInfo> SkipInfo) {
2854 PreambleConditionalStack.startReplaying();
2855 PreambleConditionalStack.setStack(s);
2856 PreambleConditionalStack.SkipInfo = SkipInfo;
2857 }
2858
2859 std::optional<PreambleSkipInfo> getPreambleSkipInfo() const {
2860 return PreambleConditionalStack.SkipInfo;
2861 }
2862
2863private:
2864 /// After processing predefined file, initialize the conditional stack from
2865 /// the preamble.
2866 void replayPreambleConditionalStack();
2867
2868 // Macro handling.
2869 void HandleDefineDirective(Token &Tok, bool ImmediatelyAfterHeaderGuard);
2870 void HandleUndefDirective();
2871
2872 // Conditional Inclusion.
2873 void HandleIfdefDirective(Token &Result, const Token &HashToken,
2874 bool isIfndef, bool ReadAnyTokensBeforeDirective);
2875 void HandleIfDirective(Token &IfToken, const Token &HashToken,
2876 bool ReadAnyTokensBeforeDirective);
2877 void HandleEndifDirective(Token &EndifToken);
2878 void HandleElseDirective(Token &Result, const Token &HashToken);
2879 void HandleElifFamilyDirective(Token &ElifToken, const Token &HashToken,
2880 tok::PPKeywordKind Kind);
2881
2882 // Pragmas.
2883 void HandlePragmaDirective(PragmaIntroducer Introducer);
2884
2885public:
2886 void HandlePragmaOnce(Token &OnceTok);
2887 void HandlePragmaMark(Token &MarkTok);
2888 void HandlePragmaPoison();
2889 void HandlePragmaSystemHeader(Token &SysHeaderTok);
2890 void HandlePragmaDependency(Token &DependencyTok);
2891 void HandlePragmaPushMacro(Token &Tok);
2892 void HandlePragmaPopMacro(Token &Tok);
2893 void HandlePragmaIncludeAlias(Token &Tok);
2894 void HandlePragmaModuleBuild(Token &Tok);
2895 void HandlePragmaHdrstop(Token &Tok);
2896 IdentifierInfo *ParsePragmaPushOrPopMacro(Token &Tok);
2897
2898 // Return true and store the first token only if any CommentHandler
2899 // has inserted some tokens and getCommentRetentionState() is false.
2900 bool HandleComment(Token &result, SourceRange Comment);
2901
2902 /// A macro is used, update information about macros that need unused
2903 /// warnings.
2904 void markMacroAsUsed(MacroInfo *MI);
2905
2906 void addMacroDeprecationMsg(const IdentifierInfo *II, std::string Msg,
2907 SourceLocation AnnotationLoc) {
2908 AnnotationInfos[II].DeprecationInfo =
2909 MacroAnnotationInfo{.Location: AnnotationLoc, .Message: std::move(Msg)};
2910 }
2911
2912 void addRestrictExpansionMsg(const IdentifierInfo *II, std::string Msg,
2913 SourceLocation AnnotationLoc) {
2914 AnnotationInfos[II].RestrictExpansionInfo =
2915 MacroAnnotationInfo{.Location: AnnotationLoc, .Message: std::move(Msg)};
2916 }
2917
2918 void addFinalLoc(const IdentifierInfo *II, SourceLocation AnnotationLoc) {
2919 AnnotationInfos[II].FinalAnnotationLoc = AnnotationLoc;
2920 }
2921
2922 const MacroAnnotations &getMacroAnnotations(const IdentifierInfo *II) const {
2923 return AnnotationInfos.find(Val: II)->second;
2924 }
2925
2926 void emitMacroExpansionWarnings(const Token &Identifier,
2927 bool IsIfnDef = false) const {
2928 IdentifierInfo *Info = Identifier.getIdentifierInfo();
2929 if (Info->isDeprecatedMacro())
2930 emitMacroDeprecationWarning(Identifier);
2931
2932 if (Info->isRestrictExpansion() &&
2933 !SourceMgr.isInMainFile(Loc: Identifier.getLocation()))
2934 emitRestrictExpansionWarning(Identifier);
2935
2936 if (!IsIfnDef) {
2937 if (Info->getName() == "INFINITY" && getLangOpts().NoHonorInfs)
2938 emitRestrictInfNaNWarning(Identifier, DiagSelection: 0);
2939 if (Info->getName() == "NAN" && getLangOpts().NoHonorNaNs)
2940 emitRestrictInfNaNWarning(Identifier, DiagSelection: 1);
2941 }
2942 }
2943
2944 static void processPathForFileMacro(SmallVectorImpl<char> &Path,
2945 const LangOptions &LangOpts,
2946 const TargetInfo &TI);
2947
2948 static void processPathToFileName(SmallVectorImpl<char> &FileName,
2949 const PresumedLoc &PLoc,
2950 const LangOptions &LangOpts,
2951 const TargetInfo &TI);
2952
2953private:
2954 void emitMacroDeprecationWarning(const Token &Identifier) const;
2955 void emitRestrictExpansionWarning(const Token &Identifier) const;
2956 void emitFinalMacroWarning(const Token &Identifier, bool IsUndef) const;
2957 void emitRestrictInfNaNWarning(const Token &Identifier,
2958 unsigned DiagSelection) const;
2959
2960 /// This boolean state keeps track if the current scanned token (by this PP)
2961 /// is in an "-Wunsafe-buffer-usage" opt-out region. Assuming PP scans a
2962 /// translation unit in a linear order.
2963 bool InSafeBufferOptOutRegion = false;
2964
2965 /// Hold the start location of the current "-Wunsafe-buffer-usage" opt-out
2966 /// region if PP is currently in such a region. Hold undefined value
2967 /// otherwise.
2968 SourceLocation CurrentSafeBufferOptOutStart; // It is used to report the start location of an never-closed region.
2969
2970 using SafeBufferOptOutRegionsTy =
2971 SmallVector<std::pair<SourceLocation, SourceLocation>, 16>;
2972 // An ordered sequence of "-Wunsafe-buffer-usage" opt-out regions in this
2973 // translation unit. Each region is represented by a pair of start and
2974 // end locations.
2975 SafeBufferOptOutRegionsTy SafeBufferOptOutMap;
2976
2977 // The "-Wunsafe-buffer-usage" opt-out regions in loaded ASTs. We use the
2978 // following structure to manage them by their ASTs.
2979 struct {
2980 // A map from unique IDs to region maps of loaded ASTs. The ID identifies a
2981 // loaded AST. See `SourceManager::getUniqueLoadedASTID`.
2982 llvm::DenseMap<FileID, SafeBufferOptOutRegionsTy> LoadedRegions;
2983
2984 // Returns a reference to the safe buffer opt-out regions of the loaded
2985 // AST where `Loc` belongs to. (Construct if absent)
2986 SafeBufferOptOutRegionsTy &
2987 findAndConsLoadedOptOutMap(SourceLocation Loc, SourceManager &SrcMgr) {
2988 return LoadedRegions[SrcMgr.getUniqueLoadedASTFileID(Loc)];
2989 }
2990
2991 // Returns a reference to the safe buffer opt-out regions of the loaded
2992 // AST where `Loc` belongs to. (This const function returns nullptr if
2993 // absent.)
2994 const SafeBufferOptOutRegionsTy *
2995 lookupLoadedOptOutMap(SourceLocation Loc,
2996 const SourceManager &SrcMgr) const {
2997 FileID FID = SrcMgr.getUniqueLoadedASTFileID(Loc);
2998 auto Iter = LoadedRegions.find(Val: FID);
2999
3000 if (Iter == LoadedRegions.end())
3001 return nullptr;
3002 return &Iter->getSecond();
3003 }
3004 } LoadedSafeBufferOptOutMap;
3005
3006public:
3007 /// \return true iff the given `Loc` is in a "-Wunsafe-buffer-usage" opt-out
3008 /// region. This `Loc` must be a source location that has been pre-processed.
3009 bool isSafeBufferOptOut(const SourceManager&SourceMgr, const SourceLocation &Loc) const;
3010
3011 /// Alter the state of whether this PP currently is in a
3012 /// "-Wunsafe-buffer-usage" opt-out region.
3013 ///
3014 /// \param isEnter true if this PP is entering a region; otherwise, this PP
3015 /// is exiting a region
3016 /// \param Loc the location of the entry or exit of a
3017 /// region
3018 /// \return true iff it is INVALID to enter or exit a region, i.e.,
3019 /// attempt to enter a region before exiting a previous region, or exiting a
3020 /// region that PP is not currently in.
3021 bool enterOrExitSafeBufferOptOutRegion(bool isEnter,
3022 const SourceLocation &Loc);
3023
3024 /// \return true iff this PP is currently in a "-Wunsafe-buffer-usage"
3025 /// opt-out region
3026 bool isPPInSafeBufferOptOutRegion();
3027
3028 /// \param StartLoc output argument. It will be set to the start location of
3029 /// the current "-Wunsafe-buffer-usage" opt-out region iff this function
3030 /// returns true.
3031 /// \return true iff this PP is currently in a "-Wunsafe-buffer-usage"
3032 /// opt-out region
3033 bool isPPInSafeBufferOptOutRegion(SourceLocation &StartLoc);
3034
3035 /// \return a sequence of SourceLocations representing ordered opt-out regions
3036 /// specified by
3037 /// `\#pragma clang unsafe_buffer_usage begin/end`s of this translation unit.
3038 SmallVector<SourceLocation, 64> serializeSafeBufferOptOutMap() const;
3039
3040 /// \param SrcLocSeqs a sequence of SourceLocations deserialized from a
3041 /// record of code `PP_UNSAFE_BUFFER_USAGE`.
3042 /// \return true iff the `Preprocessor` has been updated; false `Preprocessor`
3043 /// is same as itself before the call.
3044 bool setDeserializedSafeBufferOptOutMap(
3045 const SmallVectorImpl<SourceLocation> &SrcLocSeqs);
3046
3047private:
3048 /// Helper functions to forward lexing to the actual lexer. They all share the
3049 /// same signature.
3050 static bool CLK_Lexer(Preprocessor &P, Token &Result) {
3051 return P.CurLexer->Lex(Result);
3052 }
3053 static bool CLK_TokenLexer(Preprocessor &P, Token &Result) {
3054 return P.CurTokenLexer->Lex(Tok&: Result);
3055 }
3056 static bool CLK_CachingLexer(Preprocessor &P, Token &Result) {
3057 P.CachingLex(Result);
3058 return true;
3059 }
3060 static bool CLK_DependencyDirectivesLexer(Preprocessor &P, Token &Result) {
3061 return P.CurLexer->LexDependencyDirectiveToken(Result);
3062 }
3063 static bool CLK_LexAfterModuleImport(Preprocessor &P, Token &Result) {
3064 return P.LexAfterModuleImport(Result);
3065 }
3066};
3067
3068/// Abstract base class that describes a handler that will receive
3069/// source ranges for each of the comments encountered in the source file.
3070class CommentHandler {
3071public:
3072 virtual ~CommentHandler();
3073
3074 // The handler shall return true if it has pushed any tokens
3075 // to be read using e.g. EnterToken or EnterTokenStream.
3076 virtual bool HandleComment(Preprocessor &PP, SourceRange Comment) = 0;
3077};
3078
3079/// Abstract base class that describes a handler that will receive
3080/// source ranges for empty lines encountered in the source file.
3081class EmptylineHandler {
3082public:
3083 virtual ~EmptylineHandler();
3084
3085 // The handler handles empty lines.
3086 virtual void HandleEmptyline(SourceRange Range) = 0;
3087};
3088
3089/// Helper class to shuttle information about #embed directives from the
3090/// preprocessor to the parser through an annotation token.
3091struct EmbedAnnotationData {
3092 StringRef BinaryData;
3093 StringRef FileName;
3094};
3095
3096/// Registry of pragma handlers added by plugins
3097using PragmaHandlerRegistry = llvm::Registry<PragmaHandler>;
3098
3099} // namespace clang
3100
3101namespace llvm {
3102extern template class CLANG_TEMPLATE_ABI Registry<clang::PragmaHandler>;
3103} // namespace llvm
3104
3105#endif // LLVM_CLANG_LEX_PREPROCESSOR_H
3106

source code of clang/include/clang/Lex/Preprocessor.h