Araştırma Makalesi
BibTex RIS Kaynak Göster

Changes in Polarity and Regeneration-Related Gene Expression in In Vitro Bone Marrow Mesenchymal Stem Cells in a Rheumatoid Arthritis Injury Model and Pharmacological Modulation

Yıl 2025, Cilt: 9 Sayı: 1, 3 - 11, 21.04.2025
https://doi.org/10.46332/aemj.1493279

Öz

Purpose: The aim of this study was to investigate the changes in polarity and regeneration at the gene-protein level with pharmacological modulation of rheumatoid arthritis (RA) disease, which occurs as a result of chronic, inflammation-induced tissue erosion whose pathogenesis steps are well understood.

Materials and Methods: To investigate the damage caused by the pathogenetic steps of the disease to intracellular polarity and regeneration, bone marrow mesenchymal stem cells subjected to injury mimicry using IL-1β and IL-6 were treated with a combination of the IL-1β antagonist antibody canakinumab and the IL-6 antagonist antibody tocilizumab. The effects on cell viability, cytotoxicity, and the expression of genes related to intracellular polarity and regeneration were examined.

Results: As a result of the analyses, as expected, IL-1β and IL-6 caused a reduction in viability and an acceleration in cytotoxicity in human bone marrow stem cells imitating RA damage. In addition, in gene expression analyses, low significant changes were observed in the expression of genes consisted in polarity pathways, but significant changes were found in the expression of genes take place in regeneration mechanisms. In addition, the application of antagonist agents reversed this situation and limited normalization and even changes that increased the viability of the cells in viability tests were observed.

Conclusion: In this case, in the RA-like pathogenesis model obtained after injury mimicry, it is thought that the inflammation occurring during the disease's developmental stages causes stem cells to lose their properties such as adhesion and navigation, thereby affecting the efficiency of the regenerative properties they maintain.

Kaynakça

  • 1. Firestein GS, McInnes IB. Immunopathogenesis of rheumatoid arthritis. Immunity. 2017;46(2):183-196.
  • 2. Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. 2016;388(10055):2023-2038.
  • 3. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365(23):2205-2219.
  • 4. Foell D, Wittkowski H, Roth J. Mechanisms of disease: a 'DAMP' view of inflammatory arthritis. Nat Clin Pract Rheumatol. 2007;3(7):382-390.
  • 5. Sunahori K, Yamamura M, Yamana J, et al. The S100A8/A9 heterodimer amplifies the inflammatory response in synovial fluid cells from patients with rheumatoid arthritis. Arthritis Res Ther. 2006;8:1-2.
  • 6. Van Gestel AM, Haagsma CJ, van Riel PL. Validation of rheumatoid arthritis improvement criteria that include simplified joint counts. Arthritis Rheum. 1998;41(10):1845-1850.
  • 7. Ehrchen JM, Sunderkötter C, Foell D, Vogl T, Roth J. The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukoc Biol. 2009;86(3):557-566.
  • 8. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003;423(6937):356-361.
  • 9. Gabay C. Interleukin-6 and chronic inflammation. Arthritis Res Ther. 2006;8(2):3.
  • 10. Kim HR, Kim KW, Kim BM, Lee KA, Lee SH. Netrin-1 induces MMP-2 production through the ERK1/2 and PI3K pathways in rheumatoid synovial fibroblasts. Arthritis Res Ther. 2010;12(5):R158.
  • 11. Weyand CM, Goronzy JJ. CD4+ CD28- T cells in rheumatoid arthritis: pathogenic and regulatory functions. Rheum Dis Clin North Am. 2004;30(1):91-104.
  • 12. Goronzy JJ, Weyand CM. Developments in the scientific understanding of rheumatoid arthritis. Arthritis Res Ther. 2009;11(5):249.
  • 13. Klareskog L, Padyukov L, Rönnelid J, Alfredsson L. Genes, environment and immunity in the development of rheumatoid arthritis. Curr Opin Immunol. 2006;18(6):650-655.
  • 14. Mooney RA, Smallwood PM, Shifrin S, et al. The mechanism of action of matrix metalloproteinase inhibitors in the treatment of rheumatoid arthritis. Arthritis Rheum. 1997;40(2):217-225.
  • 15. Murphy G, Nagase H. Reappraising metalloproteinases in rheumatoid arthritis and osteoarthritis: destruction or repair? Nat Clin Pract Rheumatol. 2008;4(3): 128-135.
  • 16. Bartok B, Firestein GS. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev. 2010;233(1):233-255.
  • 17. Lefevre S, Knedla A, Tennie C, et al. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat Med. 2009;15(12):1414-1420.
  • 18. Choy EH, Panayi GS. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med. 2001;344(12):907-916.
  • 19. Kishimoto T. Interleukin-6: from basic science to medicine-40 years in immunology. Annu Rev Immunol. 2005;23(1):1-21.
  • 20. Dinarello CA. Anti-inflammatory agents: present and future. Cell. 2010;140(6):935-950.
  • 21. Gabay C, Emery P, Van Vollenhoven R, et al. Tocilizumab (IL-6 receptor antagonist) in patients with rheumatoid arthritis: the LITHE study. Lancet. 2009;374(9690):1093-1102.
  • 22. Smolen JS, Aletaha D, Bijlsma JW, et al. Treating rheumatoid arthritis to target: recommendations of an international task force. Ann Rheum Dis. 2010;69(4):631-637.
  • 23. Raychaudhuri S. Recent advances in the genetics of rheumatoid arthritis. Curr Opin Rheumatol. 2010;22(2):109-118.
  • 24. Wu C, Tan S, Liu L, et al. Transcriptome-wide association study identifies susceptibility genes for rheumatoid arthritis. Arthritis Res Ther. 2021;23(1):38.
  • 25. Okada Y, Eyre S, Suzuki A, Kochi Y, Yamamoto K. Genetics of rheumatoid arthritis: 2018 status. Ann Rheum Dis. 2019;78(4):446-453.
  • 26. Padyukov L. Genetics of rheumatoid arthritis. Semin Immunopathol. 2022;44(1):47-62.
  • 27. Dedmon LE. The genetics of rheumatoid arthritis. Rheumatology (Oxford). 2020;59(10):2661-2670.
  • 28. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65(1-2):55-63.
  • 29. Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30(9):36.
  • 30. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25(4):402-408.
  • 31. Volpe DA, Hamed SS, Zhang LK. Use of different parameters and equations for calculation of IC 50 values in efflux assays: potential sources of variability in IC 50 determination. The AAPS J. 2014;16(1):172-180.
  • 32. Chou TC. The combination index (CI < 1) as the definition of synergism and of synergy claims. Cancer Res. 2010;70(2):440-446.
  • 33. Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008;61(4):344-349.
  • 34. Walmsley M, Katsikis PD, Abney E, et al. Interleukin-10 inhibition of the progression of established collagen-induced arthritis. Arthritis Rheum. 1996;39(3): 495-503.
  • 35. Saklatvala J. Tumour necrosis factor α stimulates resorption and inhibits synthesis of proteoglycan in cartilage. Nature. 1986;322(6079):547-549.

Romatoid Artrit Yaralanma Modelinde In Vitro Kemik İliği Mezenkimal Kök Hücrelerinde Polarite ve Rejenerasyonla İlişkili Gen İfadesindeki Değişiklikler ve Farmakolojik Modülasyonu

Yıl 2025, Cilt: 9 Sayı: 1, 3 - 11, 21.04.2025
https://doi.org/10.46332/aemj.1493279

Öz

Amaç: Bu çalışmanın hedefi patogenez basamakları iyi anlaşılmış kronik, inflamasyon sebebiyle dokusal erozyonun sonucunda oluşan Romatoid Artirit (RA) hastalığının farmakolojik modülasyon ile gen-protein düzeyinde polarite ve rejenerasyondaki değişimleri incelenmiştir.

Araçlar ve Yöntem: Hastalığın patogenez basamaklarının hücre içi polarite ve rejenerasyona verdiği zararı araştırabilmek için Il-1β ve IL-6 ile hasar taklidi yapılmış kemik iliği mezenkimal kök hücrelerinde IL-1β antagonist antikoru canakinumab ve IL-6 antagonist antikoru tocilizumab kombinasyon halinde uygulanmasının hücre canlılığı, sitotoksisite ve hücre içi polarite ve rejenerasyon ile ilgili genlerin ifadesi incelenmiştir.

Bulgular: Analizler sonucunda IL-1β ve IL-6 beklendiği üzere RA hasar taklidi yapılan insan kemik iliği kök hücrelerinde canlılığının azalmasına sitotoksisitenin aynı oranda artmasına sebep olmuştur. Bunun yanında gen ifade analizlerinde polarite yolaklarında görevli genlerin ifadelenmesinde düşük oranda anlamlı değişiklik görülmüş ancak rejenerasyon ile ilgili genlerin ifadelenmelerinde anlamlı değişikliklere rastlanmıştır. Bunun yanında antagonist ajanların uygulanması bu durumu tersine çevirmiş sınırlı seviyede normalleşme hatta hücrelerin canlılık testlerinde canlılığı artıran değişimler gözlemlenmiştir.

Sonuç: Bu durumda hasar taklidi sonrası elde edilen RA benzeri patogenez modelinde hastalığın gelişim basamaklarında gerçekleşen inflamasyonun etkisiyle kök hücrelerin adherasyon, yön bulma, gibi özelliklerini kaybetmeleri, korudukları rejenerasyon özellik verimliliğini etkilemekte olduğu düşünülmüştür.

Kaynakça

  • 1. Firestein GS, McInnes IB. Immunopathogenesis of rheumatoid arthritis. Immunity. 2017;46(2):183-196.
  • 2. Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. 2016;388(10055):2023-2038.
  • 3. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365(23):2205-2219.
  • 4. Foell D, Wittkowski H, Roth J. Mechanisms of disease: a 'DAMP' view of inflammatory arthritis. Nat Clin Pract Rheumatol. 2007;3(7):382-390.
  • 5. Sunahori K, Yamamura M, Yamana J, et al. The S100A8/A9 heterodimer amplifies the inflammatory response in synovial fluid cells from patients with rheumatoid arthritis. Arthritis Res Ther. 2006;8:1-2.
  • 6. Van Gestel AM, Haagsma CJ, van Riel PL. Validation of rheumatoid arthritis improvement criteria that include simplified joint counts. Arthritis Rheum. 1998;41(10):1845-1850.
  • 7. Ehrchen JM, Sunderkötter C, Foell D, Vogl T, Roth J. The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukoc Biol. 2009;86(3):557-566.
  • 8. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003;423(6937):356-361.
  • 9. Gabay C. Interleukin-6 and chronic inflammation. Arthritis Res Ther. 2006;8(2):3.
  • 10. Kim HR, Kim KW, Kim BM, Lee KA, Lee SH. Netrin-1 induces MMP-2 production through the ERK1/2 and PI3K pathways in rheumatoid synovial fibroblasts. Arthritis Res Ther. 2010;12(5):R158.
  • 11. Weyand CM, Goronzy JJ. CD4+ CD28- T cells in rheumatoid arthritis: pathogenic and regulatory functions. Rheum Dis Clin North Am. 2004;30(1):91-104.
  • 12. Goronzy JJ, Weyand CM. Developments in the scientific understanding of rheumatoid arthritis. Arthritis Res Ther. 2009;11(5):249.
  • 13. Klareskog L, Padyukov L, Rönnelid J, Alfredsson L. Genes, environment and immunity in the development of rheumatoid arthritis. Curr Opin Immunol. 2006;18(6):650-655.
  • 14. Mooney RA, Smallwood PM, Shifrin S, et al. The mechanism of action of matrix metalloproteinase inhibitors in the treatment of rheumatoid arthritis. Arthritis Rheum. 1997;40(2):217-225.
  • 15. Murphy G, Nagase H. Reappraising metalloproteinases in rheumatoid arthritis and osteoarthritis: destruction or repair? Nat Clin Pract Rheumatol. 2008;4(3): 128-135.
  • 16. Bartok B, Firestein GS. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev. 2010;233(1):233-255.
  • 17. Lefevre S, Knedla A, Tennie C, et al. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat Med. 2009;15(12):1414-1420.
  • 18. Choy EH, Panayi GS. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med. 2001;344(12):907-916.
  • 19. Kishimoto T. Interleukin-6: from basic science to medicine-40 years in immunology. Annu Rev Immunol. 2005;23(1):1-21.
  • 20. Dinarello CA. Anti-inflammatory agents: present and future. Cell. 2010;140(6):935-950.
  • 21. Gabay C, Emery P, Van Vollenhoven R, et al. Tocilizumab (IL-6 receptor antagonist) in patients with rheumatoid arthritis: the LITHE study. Lancet. 2009;374(9690):1093-1102.
  • 22. Smolen JS, Aletaha D, Bijlsma JW, et al. Treating rheumatoid arthritis to target: recommendations of an international task force. Ann Rheum Dis. 2010;69(4):631-637.
  • 23. Raychaudhuri S. Recent advances in the genetics of rheumatoid arthritis. Curr Opin Rheumatol. 2010;22(2):109-118.
  • 24. Wu C, Tan S, Liu L, et al. Transcriptome-wide association study identifies susceptibility genes for rheumatoid arthritis. Arthritis Res Ther. 2021;23(1):38.
  • 25. Okada Y, Eyre S, Suzuki A, Kochi Y, Yamamoto K. Genetics of rheumatoid arthritis: 2018 status. Ann Rheum Dis. 2019;78(4):446-453.
  • 26. Padyukov L. Genetics of rheumatoid arthritis. Semin Immunopathol. 2022;44(1):47-62.
  • 27. Dedmon LE. The genetics of rheumatoid arthritis. Rheumatology (Oxford). 2020;59(10):2661-2670.
  • 28. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65(1-2):55-63.
  • 29. Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30(9):36.
  • 30. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25(4):402-408.
  • 31. Volpe DA, Hamed SS, Zhang LK. Use of different parameters and equations for calculation of IC 50 values in efflux assays: potential sources of variability in IC 50 determination. The AAPS J. 2014;16(1):172-180.
  • 32. Chou TC. The combination index (CI < 1) as the definition of synergism and of synergy claims. Cancer Res. 2010;70(2):440-446.
  • 33. Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008;61(4):344-349.
  • 34. Walmsley M, Katsikis PD, Abney E, et al. Interleukin-10 inhibition of the progression of established collagen-induced arthritis. Arthritis Rheum. 1996;39(3): 495-503.
  • 35. Saklatvala J. Tumour necrosis factor α stimulates resorption and inhibits synthesis of proteoglycan in cartilage. Nature. 1986;322(6079):547-549.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Romatoloji ve Artrit
Bölüm Bilimsel Araştırma Makaleleri
Yazarlar

Muhammet Ocak 0000-0001-7501-814X

Erken Görünüm Tarihi 16 Nisan 2025
Yayımlanma Tarihi 21 Nisan 2025
Gönderilme Tarihi 31 Mayıs 2024
Kabul Tarihi 18 Temmuz 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 1

Kaynak Göster

APA Ocak, M. (2025). Changes in Polarity and Regeneration-Related Gene Expression in In Vitro Bone Marrow Mesenchymal Stem Cells in a Rheumatoid Arthritis Injury Model and Pharmacological Modulation. Ahi Evran Medical Journal, 9(1), 3-11. https://doi.org/10.46332/aemj.1493279
AMA Ocak M. Changes in Polarity and Regeneration-Related Gene Expression in In Vitro Bone Marrow Mesenchymal Stem Cells in a Rheumatoid Arthritis Injury Model and Pharmacological Modulation. Ahi Evran Medical Journal. Nisan 2025;9(1):3-11. doi:10.46332/aemj.1493279
Chicago Ocak, Muhammet. “Changes in Polarity and Regeneration-Related Gene Expression in In Vitro Bone Marrow Mesenchymal Stem Cells in a Rheumatoid Arthritis Injury Model and Pharmacological Modulation”. Ahi Evran Medical Journal 9, sy. 1 (Nisan 2025): 3-11. https://doi.org/10.46332/aemj.1493279.
EndNote Ocak M (01 Nisan 2025) Changes in Polarity and Regeneration-Related Gene Expression in In Vitro Bone Marrow Mesenchymal Stem Cells in a Rheumatoid Arthritis Injury Model and Pharmacological Modulation. Ahi Evran Medical Journal 9 1 3–11.
IEEE M. Ocak, “Changes in Polarity and Regeneration-Related Gene Expression in In Vitro Bone Marrow Mesenchymal Stem Cells in a Rheumatoid Arthritis Injury Model and Pharmacological Modulation”, Ahi Evran Medical Journal, c. 9, sy. 1, ss. 3–11, 2025, doi: 10.46332/aemj.1493279.
ISNAD Ocak, Muhammet. “Changes in Polarity and Regeneration-Related Gene Expression in In Vitro Bone Marrow Mesenchymal Stem Cells in a Rheumatoid Arthritis Injury Model and Pharmacological Modulation”. Ahi Evran Medical Journal 9/1 (Nisan2025), 3-11. https://doi.org/10.46332/aemj.1493279.
JAMA Ocak M. Changes in Polarity and Regeneration-Related Gene Expression in In Vitro Bone Marrow Mesenchymal Stem Cells in a Rheumatoid Arthritis Injury Model and Pharmacological Modulation. Ahi Evran Medical Journal. 2025;9:3–11.
MLA Ocak, Muhammet. “Changes in Polarity and Regeneration-Related Gene Expression in In Vitro Bone Marrow Mesenchymal Stem Cells in a Rheumatoid Arthritis Injury Model and Pharmacological Modulation”. Ahi Evran Medical Journal, c. 9, sy. 1, 2025, ss. 3-11, doi:10.46332/aemj.1493279.
Vancouver Ocak M. Changes in Polarity and Regeneration-Related Gene Expression in In Vitro Bone Marrow Mesenchymal Stem Cells in a Rheumatoid Arthritis Injury Model and Pharmacological Modulation. Ahi Evran Medical Journal. 2025;9(1):3-11.

Dergimiz, ULAKBİM TR Dizin, DOAJ, Index Copernicus, EBSCO ve Türkiye Atıf Dizini (Turkiye Citation Index)' de indekslenmektedir. Ahi Evran Tıp dergisi süreli bilimsel yayındır. Kaynak gösterilmeden kullanılamaz. Makalelerin sorumlulukları yazarlara aittir.

Creative Commons Lisansı
Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.