Skip to content

ogsdave/PoseLib-hf

 
 

Repository files navigation

Three-view Focal Length Recovery From Homographies

This repo contains code for paper "Three-view Focal Length Recovery From Homographies" (arxiv: TBA)

Installation

Create an environment with pytorch and packaged from requirements.txt.

Install PoseLib fork with implemented estimators into the environment:

git clone https://github.com/kocurvik/PoseLib-hf
git cd PoseLib-hf
pip install .

Before running the python scripts make sure that the repo is in your python path (e.g. export PYTHONPATH=/path/to/repo/hf)

Dataset

You can download the HomoTT dataset with matches here. The GT focal lengths were obtained using dataset_utils\calibrate.py and matches were obtained using prepare_custom.py.

Evaluation

To perform the evaluation on real data run:

for x in $( ls /path/to/dataset/sym_matches); do
  echo $x
  python eval_f.py -c 1 -nw 64 triplets-case1-features_superpoint_noresize_2048-LG /path/to/dataset/sym_matches/$x
  python eval_f.py -c 2 -nw 64 triplets-case2-features_superpoint_noresize_2048-LG /path/to/dataset/sym_matches/$x
  python eval_f.py -c 1 -g -nw 64 triplets-case1-features_superpoint_noresize_2048-LG /path/to/dataset/sym_matches/$x
  python eval_f.py -c 2 -g -nw 64 triplets-case2-features_superpoint_noresize_2048-LG /path/to/dataset/sym_matches/$x
done

You can run the synthetic experiments using boxplot.py.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 97.8%
  • Jupyter Notebook 2.2%