Skip to content

Add LinearCombination block encoding #1133

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
Jul 16, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions dev_tools/autogenerate-bloqs-notebooks-v2.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,7 @@
import qualtran.bloqs.block_encoding.chebyshev_polynomial
import qualtran.bloqs.block_encoding.lcu_block_encoding
import qualtran.bloqs.block_encoding.lcu_select_and_prepare
import qualtran.bloqs.block_encoding.linear_combination
import qualtran.bloqs.block_encoding.phase
import qualtran.bloqs.bookkeeping
import qualtran.bloqs.chemistry.df.double_factorization
Expand Down Expand Up @@ -592,6 +593,7 @@
qualtran.bloqs.block_encoding.unitary._UNITARY_DOC,
qualtran.bloqs.block_encoding.tensor_product._TENSOR_PRODUCT_DOC,
qualtran.bloqs.block_encoding.product._PRODUCT_DOC,
qualtran.bloqs.block_encoding.linear_combination._LINEAR_COMBINATION_DOC,
qualtran.bloqs.block_encoding.phase._PHASE_DOC,
],
directory=f'{SOURCE_DIR}/bloqs/block_encoding/',
Expand Down
1 change: 1 addition & 0 deletions qualtran/bloqs/block_encoding/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
LCUBlockEncoding,
LCUBlockEncodingZeroState,
)
from qualtran.bloqs.block_encoding.linear_combination import LinearCombination
from qualtran.bloqs.block_encoding.phase import Phase
from qualtran.bloqs.block_encoding.product import Product
from qualtran.bloqs.block_encoding.tensor_product import TensorProduct
Expand Down
129 changes: 129 additions & 0 deletions qualtran/bloqs/block_encoding/block_encoding.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -1175,6 +1175,135 @@
"show_call_graph(phase_block_encoding_g)\n",
"show_counts_sigma(phase_block_encoding_sigma)"
]
},
{
"cell_type": "markdown",
"id": "5f9d88fa",
"metadata": {
"cq.autogen": "LinearCombination.bloq_doc.md"
},
"source": [
"## `LinearCombination`\n",
"Linear combination of a sequence of block encodings.\n",
"\n",
"Builds the block encoding $B[\\lambda_1 U_1 + \\lambda_2 U_2 + \\cdots + \\lambda_n U_n]$ given\n",
"block encodings $B[U_1], \\ldots, B[U_n]$ and coefficients $\\lambda_i \\in \\mathbb{R}$.\n",
"\n",
"When each $B[U_i]$ is a $(\\alpha_i, a_i, \\epsilon_i)$-block encoding of $U_i$, we have that\n",
"$B[\\lambda_1 U_1 + \\cdots + \\lambda_n U_n]$ is a $(\\alpha, a, \\epsilon)$-block encoding\n",
"of $\\lambda_1 U_1 + \\cdots + \\lambda_n U_n$ where the normalization constant\n",
"$\\alpha = \\sum_i \\lvert\\lambda_i\\rvert\\alpha_i$, number of ancillas\n",
"$a = \\lceil \\log_2 n \\rceil + \\max_i a_i$, and precision\n",
"$\\epsilon = (\\sum_i \\lvert\\lambda_i\\rvert)\\max_i \\epsilon_i$.\n",
"\n",
"Under the hood, this bloq uses LCU Prepare and Select oracles to build the block encoding.\n",
"These oracles will be automatically instantiated if not specified by the user.\n",
"\n",
"#### Parameters\n",
" - `block_encodings`: A sequence of block encodings.\n",
" - `lambd`: Corresponding coefficients.\n",
" - `lambd_bits`: Number of bits needed to represent coefficients precisely.\n",
" - `prepare`: If specified, oracle preparing $\\sum_i \\sqrt{|\\lambda_i|} |i\\rangle$ (state should be normalized and can have junk).\n",
" - `select`: If specified, oracle taking $|i\\rangle|\\psi\\rangle \\mapsto \\text{sgn}(\\lambda_i) |i\\rangle U_i|\\psi\\rangle$. \n",
"\n",
"#### Registers\n",
" - `system`: The system register.\n",
" - `ancilla`: The ancilla register (present only if bitsize > 0).\n",
" - `resource`: The resource register (present only if bitsize > 0). \n",
"\n",
"#### References\n",
" - [Quantum algorithms: A survey of applications and end-to-end complexities]( https://arxiv.org/abs/2310.03011). Dalzell et al. (2023). Ch. 10.2.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6e60f66d",
"metadata": {
"cq.autogen": "LinearCombination.bloq_doc.py"
},
"outputs": [],
"source": [
"from qualtran.bloqs.block_encoding import LinearCombination"
]
},
{
"cell_type": "markdown",
"id": "7c3b1b39",
"metadata": {
"cq.autogen": "LinearCombination.example_instances.md"
},
"source": [
"### Example Instances"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7048adb0",
"metadata": {
"cq.autogen": "LinearCombination.linear_combination_block_encoding"
},
"outputs": [],
"source": [
"from qualtran.bloqs.basic_gates import Hadamard, TGate, XGate, ZGate\n",
"from qualtran.bloqs.block_encoding.unitary import Unitary\n",
"\n",
"linear_combination_block_encoding = LinearCombination(\n",
" (Unitary(TGate()), Unitary(Hadamard()), Unitary(XGate()), Unitary(ZGate())),\n",
" lambd=(0.25, -0.25, 0.25, -0.25),\n",
" lambd_bits=1,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "a3c0e843",
"metadata": {
"cq.autogen": "LinearCombination.graphical_signature.md"
},
"source": [
"#### Graphical Signature"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "403264e7",
"metadata": {
"cq.autogen": "LinearCombination.graphical_signature.py"
},
"outputs": [],
"source": [
"from qualtran.drawing import show_bloqs\n",
"show_bloqs([linear_combination_block_encoding],\n",
" ['`linear_combination_block_encoding`'])"
]
},
{
"cell_type": "markdown",
"id": "a506b326",
"metadata": {
"cq.autogen": "LinearCombination.call_graph.md"
},
"source": [
"### Call Graph"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9df2892b",
"metadata": {
"cq.autogen": "LinearCombination.call_graph.py"
},
"outputs": [],
"source": [
"from qualtran.resource_counting.generalizers import ignore_split_join\n",
"linear_combination_block_encoding_g, linear_combination_block_encoding_sigma = linear_combination_block_encoding.call_graph(max_depth=1, generalizer=ignore_split_join)\n",
"show_call_graph(linear_combination_block_encoding_g)\n",
"show_counts_sigma(linear_combination_block_encoding_sigma)"
]
}
],
"metadata": {
Expand Down
Loading
Loading