Generalized trigonometry

From HandWiki
Short description: Study of triangles in other spaces than the Euclidean plane

Ordinary trigonometry studies triangles in the Euclidean plane 2. There are a number of ways of defining the ordinary Euclidean geometric trigonometric functions on real numbers, for example right-angled triangle definitions, unit circle definitions, series definitions[broken anchor], definitions via differential equations[broken anchor], and definitions using functional equations. Generalizations of trigonometric functions are often developed by starting with one of the above methods and adapting it to a situation other than the real numbers of Euclidean geometry. Generally, trigonometry can be the study of triples of points in any kind of geometry or space. A triangle is the polygon with the smallest number of vertices, so one direction to generalize is to study higher-dimensional analogs of angles and polygons: solid angles and polytopes such as tetrahedrons and n-simplices.

Trigonometry

Higher dimensions

Trigonometric functions

  • Trigonometric functions can be defined for fractional differential equations.[10]

Other

See also

References

  1. Thompson, K.; Dray, T. (2000), "Taxicab angles and trigonometry", Pi Mu Epsilon Journal 11 (2): 87–96, Bibcode2011arXiv1101.2917T, http://www.physics.orst.edu/~tevian/taxicab/taxicab.pdf, retrieved 2009-05-18 
  2. Herranz, Francisco J.; Ortega, Ramón; Santander, Mariano (2000), "Trigonometry of spacetimes: a new self-dual approach to a curvature/signature (in)dependent trigonometry", Journal of Physics A 33 (24): 4525–4551, doi:10.1088/0305-4470/33/24/309, Bibcode2000JPhA...33.4525H 
  3. Liu, Honghai; Coghill, George M. (2005), "Fuzzy Qualitative Trigonometry", 2005 IEEE International Conference on Systems, Man and Cybernetics, 2, pp. 1291–1296, archived from the original on 2011-07-25, https://web.archive.org/web/20110725170037/http://userweb.port.ac.uk/~liuh/Papers/LiuCoghill05c_SMC.pdf 
  4. Gustafson, K. E. (1999), "A computational trigonometry, and related contributions by Russians Kantorovich, Krein, Kaporin", Вычислительные технологии 4 (3): 73–83, http://www.ict.nsc.ru/jct/getfile.php?id=159 
  5. Karpenkov, Oleg (2008), "Elementary notions of lattice trigonometry", Mathematica Scandinavica 102 (2): 161–205, doi:10.7146/math.scand.a-15058 
  6. Aslaksen, Helmer; Huynh, Hsueh-Ling (1997), "Laws of trigonometry in symmetric spaces", Geometry from the Pacific Rim (Singapore, 1994), Berlin: de Gruyter, pp. 23–36 
  7. Leuzinger, Enrico (1992), "On the trigonometry of symmetric spaces", Commentarii Mathematici Helvetici 67 (2): 252–286, doi:10.1007/BF02566499 
  8. Masala, G. (1999), "Regular triangles and isoclinic triangles in the Grassmann manifolds G2(RN)", Rendiconti del Seminario Matematico Università e Politecnico di Torino 57 (2): 91–104 
  9. Richardson, G. (1902-03-01). "The Trigonometry of the Tetrahedron". The Mathematical Gazette 2 (32): 149–158. doi:10.2307/3603090. https://zenodo.org/record/1449743. 
  10. West, Bruce J.; Bologna, Mauro; Grigolini, Paolo (2003), Physics of fractal operators, Institute for Nonlinear Science, New York: Springer-Verlag, p. 101, doi:10.1007/978-0-387-21746-8, ISBN 0-387-95554-2 
  11. Harkin, Anthony A.; Harkin, Joseph B. (2004), "Geometry of generalized complex numbers", Mathematics Magazine 77 (2): 118–129, doi:10.1080/0025570X.2004.11953236 
  12. Yamaleev, Robert M. (2005), "Complex algebras on n-order polynomials and generalizations of trigonometry, oscillator model and Hamilton dynamics", Advances in Applied Clifford Algebras 15 (1): 123–150, doi:10.1007/s00006-005-0007-y, archived from the original on 2011-07-22, https://web.archive.org/web/20110722194119/http://www.clifford-algebras.org/v15/v151/YAMAL151.pdf 
  13. Antippa, Adel F. (2003), "The combinatorial structure of trigonometry", International Journal of Mathematics and Mathematical Sciences 2003 (8): 475–500, doi:10.1155/S0161171203106230, http://www.emis.de/journals/HOA/IJMMS/2003/8475.pdf