LLVM 20.0.0git
VNCoercion.cpp
Go to the documentation of this file.
4#include "llvm/IR/IRBuilder.h"
6
7#define DEBUG_TYPE "vncoerce"
8
9namespace llvm {
10namespace VNCoercion {
11
13 return Ty->isStructTy() || Ty->isArrayTy() || isa<ScalableVectorType>(Ty);
14}
15
16/// Return true if coerceAvailableValueToLoadType will succeed.
18 const DataLayout &DL) {
19 Type *StoredTy = StoredVal->getType();
20
21 if (StoredTy == LoadTy)
22 return true;
23
24 if (isa<ScalableVectorType>(StoredTy) && isa<ScalableVectorType>(LoadTy) &&
25 DL.getTypeSizeInBits(StoredTy) == DL.getTypeSizeInBits(LoadTy))
26 return true;
27
28 // If the loaded/stored value is a first class array/struct, or scalable type,
29 // don't try to transform them. We need to be able to bitcast to integer.
32 return false;
33
34 uint64_t StoreSize = DL.getTypeSizeInBits(StoredTy).getFixedValue();
35
36 // The store size must be byte-aligned to support future type casts.
37 if (llvm::alignTo(StoreSize, 8) != StoreSize)
38 return false;
39
40 // The store has to be at least as big as the load.
41 if (StoreSize < DL.getTypeSizeInBits(LoadTy).getFixedValue())
42 return false;
43
44 bool StoredNI = DL.isNonIntegralPointerType(StoredTy->getScalarType());
45 bool LoadNI = DL.isNonIntegralPointerType(LoadTy->getScalarType());
46 // Don't coerce non-integral pointers to integers or vice versa.
47 if (StoredNI != LoadNI) {
48 // As a special case, allow coercion of memset used to initialize
49 // an array w/null. Despite non-integral pointers not generally having a
50 // specific bit pattern, we do assume null is zero.
51 if (auto *CI = dyn_cast<Constant>(StoredVal))
52 return CI->isNullValue();
53 return false;
54 } else if (StoredNI && LoadNI &&
55 StoredTy->getPointerAddressSpace() !=
56 LoadTy->getPointerAddressSpace()) {
57 return false;
58 }
59
60
61 // The implementation below uses inttoptr for vectors of unequal size; we
62 // can't allow this for non integral pointers. We could teach it to extract
63 // exact subvectors if desired.
64 if (StoredNI && StoreSize != DL.getTypeSizeInBits(LoadTy).getFixedValue())
65 return false;
66
67 if (StoredTy->isTargetExtTy() || LoadTy->isTargetExtTy())
68 return false;
69
70 return true;
71}
72
73/// If we saw a store of a value to memory, and
74/// then a load from a must-aliased pointer of a different type, try to coerce
75/// the stored value. LoadedTy is the type of the load we want to replace.
76/// IRB is IRBuilder used to insert new instructions.
77///
78/// If we can't do it, return null.
80 IRBuilderBase &Helper,
81 const DataLayout &DL) {
82 assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) &&
83 "precondition violation - materialization can't fail");
84 if (auto *C = dyn_cast<Constant>(StoredVal))
85 StoredVal = ConstantFoldConstant(C, DL);
86
87 // If this is already the right type, just return it.
88 Type *StoredValTy = StoredVal->getType();
89
90 TypeSize StoredValSize = DL.getTypeSizeInBits(StoredValTy);
91 TypeSize LoadedValSize = DL.getTypeSizeInBits(LoadedTy);
92
93 // If the store and reload are the same size, we can always reuse it.
94 if (StoredValSize == LoadedValSize) {
95 // Pointer to Pointer -> use bitcast.
96 if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) {
97 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
98 } else {
99 // Convert source pointers to integers, which can be bitcast.
100 if (StoredValTy->isPtrOrPtrVectorTy()) {
101 StoredValTy = DL.getIntPtrType(StoredValTy);
102 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
103 }
104
105 Type *TypeToCastTo = LoadedTy;
106 if (TypeToCastTo->isPtrOrPtrVectorTy())
107 TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
108
109 if (StoredValTy != TypeToCastTo)
110 StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo);
111
112 // Cast to pointer if the load needs a pointer type.
113 if (LoadedTy->isPtrOrPtrVectorTy())
114 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
115 }
116
117 if (auto *C = dyn_cast<ConstantExpr>(StoredVal))
118 StoredVal = ConstantFoldConstant(C, DL);
119
120 return StoredVal;
121 }
122 // If the loaded value is smaller than the available value, then we can
123 // extract out a piece from it. If the available value is too small, then we
124 // can't do anything.
125 assert(!StoredValSize.isScalable() &&
126 TypeSize::isKnownGE(StoredValSize, LoadedValSize) &&
127 "canCoerceMustAliasedValueToLoad fail");
128
129 // Convert source pointers to integers, which can be manipulated.
130 if (StoredValTy->isPtrOrPtrVectorTy()) {
131 StoredValTy = DL.getIntPtrType(StoredValTy);
132 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
133 }
134
135 // Convert vectors and fp to integer, which can be manipulated.
136 if (!StoredValTy->isIntegerTy()) {
137 StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize);
138 StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy);
139 }
140
141 // If this is a big-endian system, we need to shift the value down to the low
142 // bits so that a truncate will work.
143 if (DL.isBigEndian()) {
144 uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy).getFixedValue() -
145 DL.getTypeStoreSizeInBits(LoadedTy).getFixedValue();
146 StoredVal = Helper.CreateLShr(
147 StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt));
148 }
149
150 // Truncate the integer to the right size now.
151 Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize);
152 StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy);
153
154 if (LoadedTy != NewIntTy) {
155 // If the result is a pointer, inttoptr.
156 if (LoadedTy->isPtrOrPtrVectorTy())
157 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
158 else
159 // Otherwise, bitcast.
160 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
161 }
162
163 if (auto *C = dyn_cast<Constant>(StoredVal))
164 StoredVal = ConstantFoldConstant(C, DL);
165
166 return StoredVal;
167}
168
169/// This function is called when we have a memdep query of a load that ends up
170/// being a clobbering memory write (store, memset, memcpy, memmove). This
171/// means that the write *may* provide bits used by the load but we can't be
172/// sure because the pointers don't must-alias.
173///
174/// Check this case to see if there is anything more we can do before we give
175/// up. This returns -1 if we have to give up, or a byte number in the stored
176/// value of the piece that feeds the load.
177static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
178 Value *WritePtr,
179 uint64_t WriteSizeInBits,
180 const DataLayout &DL) {
181 // If the loaded/stored value is a first class array/struct, or scalable type,
182 // don't try to transform them. We need to be able to bitcast to integer.
184 return -1;
185
186 int64_t StoreOffset = 0, LoadOffset = 0;
187 Value *StoreBase =
188 GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
189 Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
190 if (StoreBase != LoadBase)
191 return -1;
192
193 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedValue();
194
195 if ((WriteSizeInBits & 7) | (LoadSize & 7))
196 return -1;
197 uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes.
198 LoadSize /= 8;
199
200 // If the Load isn't completely contained within the stored bits, we don't
201 // have all the bits to feed it. We could do something crazy in the future
202 // (issue a smaller load then merge the bits in) but this seems unlikely to be
203 // valuable.
204 if (StoreOffset > LoadOffset ||
205 StoreOffset + int64_t(StoreSize) < LoadOffset + int64_t(LoadSize))
206 return -1;
207
208 // Okay, we can do this transformation. Return the number of bytes into the
209 // store that the load is.
210 return LoadOffset - StoreOffset;
211}
212
213/// This function is called when we have a
214/// memdep query of a load that ends up being a clobbering store.
216 StoreInst *DepSI, const DataLayout &DL) {
217 auto *StoredVal = DepSI->getValueOperand();
218
219 // Cannot handle reading from store of first-class aggregate or scalable type.
220 if (isFirstClassAggregateOrScalableType(StoredVal->getType()))
221 return -1;
222
223 if (!canCoerceMustAliasedValueToLoad(StoredVal, LoadTy, DL))
224 return -1;
225
226 Value *StorePtr = DepSI->getPointerOperand();
227 uint64_t StoreSize =
228 DL.getTypeSizeInBits(DepSI->getValueOperand()->getType()).getFixedValue();
229 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize,
230 DL);
231}
232
233/// This function is called when we have a
234/// memdep query of a load that ends up being clobbered by another load. See if
235/// the other load can feed into the second load.
236int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI,
237 const DataLayout &DL) {
238 // Cannot handle reading from store of first-class aggregate yet.
239 if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
240 return -1;
241
242 if (!canCoerceMustAliasedValueToLoad(DepLI, LoadTy, DL))
243 return -1;
244
245 Value *DepPtr = DepLI->getPointerOperand();
246 uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType()).getFixedValue();
247 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
248}
249
251 MemIntrinsic *MI, const DataLayout &DL) {
252 // If the mem operation is a non-constant size, we can't handle it.
253 ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
254 if (!SizeCst)
255 return -1;
256 uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8;
257
258 // If this is memset, we just need to see if the offset is valid in the size
259 // of the memset..
260 if (const auto *memset_inst = dyn_cast<MemSetInst>(MI)) {
261 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) {
262 auto *CI = dyn_cast<ConstantInt>(memset_inst->getValue());
263 if (!CI || !CI->isZero())
264 return -1;
265 }
266 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
267 MemSizeInBits, DL);
268 }
269
270 // If we have a memcpy/memmove, the only case we can handle is if this is a
271 // copy from constant memory. In that case, we can read directly from the
272 // constant memory.
273 MemTransferInst *MTI = cast<MemTransferInst>(MI);
274
275 Constant *Src = dyn_cast<Constant>(MTI->getSource());
276 if (!Src)
277 return -1;
278
279 GlobalVariable *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(Src));
280 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
281 return -1;
282
283 // See if the access is within the bounds of the transfer.
284 int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
285 MemSizeInBits, DL);
286 if (Offset == -1)
287 return Offset;
288
289 // Otherwise, see if we can constant fold a load from the constant with the
290 // offset applied as appropriate.
291 unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
292 if (ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset), DL))
293 return Offset;
294 return -1;
295}
296
298 Type *LoadTy, IRBuilderBase &Builder,
299 const DataLayout &DL) {
300 LLVMContext &Ctx = SrcVal->getType()->getContext();
301
302 // If two pointers are in the same address space, they have the same size,
303 // so we don't need to do any truncation, etc. This avoids introducing
304 // ptrtoint instructions for pointers that may be non-integral.
305 if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() &&
306 cast<PointerType>(SrcVal->getType())->getAddressSpace() ==
307 cast<PointerType>(LoadTy)->getAddressSpace()) {
308 return SrcVal;
309 }
310
311 // Return scalable values directly to avoid needing to bitcast to integer
312 // types, as we do not support non-zero Offsets.
313 if (isa<ScalableVectorType>(LoadTy)) {
314 assert(Offset == 0 && "Expected a zero offset for scalable types");
315 return SrcVal;
316 }
317
318 uint64_t StoreSize =
319 (DL.getTypeSizeInBits(SrcVal->getType()).getFixedValue() + 7) / 8;
320 uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy).getFixedValue() + 7) / 8;
321 // Compute which bits of the stored value are being used by the load. Convert
322 // to an integer type to start with.
323 if (SrcVal->getType()->isPtrOrPtrVectorTy())
324 SrcVal =
325 Builder.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType()));
326 if (!SrcVal->getType()->isIntegerTy())
327 SrcVal =
328 Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8));
329
330 // Shift the bits to the least significant depending on endianness.
331 unsigned ShiftAmt;
332 if (DL.isLittleEndian())
333 ShiftAmt = Offset * 8;
334 else
335 ShiftAmt = (StoreSize - LoadSize - Offset) * 8;
336 if (ShiftAmt)
337 SrcVal = Builder.CreateLShr(SrcVal,
338 ConstantInt::get(SrcVal->getType(), ShiftAmt));
339
340 if (LoadSize != StoreSize)
341 SrcVal = Builder.CreateTruncOrBitCast(SrcVal,
342 IntegerType::get(Ctx, LoadSize * 8));
343 return SrcVal;
344}
345
346Value *getValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy,
347 Instruction *InsertPt, const DataLayout &DL) {
348#ifndef NDEBUG
349 TypeSize SrcValSize = DL.getTypeStoreSize(SrcVal->getType());
350 TypeSize LoadSize = DL.getTypeStoreSize(LoadTy);
351 assert(SrcValSize.isScalable() == LoadSize.isScalable());
352 assert((SrcValSize.isScalable() || Offset + LoadSize <= SrcValSize) &&
353 "Expected Offset + LoadSize <= SrcValSize");
354 assert(
355 (!SrcValSize.isScalable() || (Offset == 0 && LoadSize == SrcValSize)) &&
356 "Expected scalable type sizes to match");
357#endif
358 IRBuilder<> Builder(InsertPt);
359 SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL);
360 return coerceAvailableValueToLoadType(SrcVal, LoadTy, Builder, DL);
361}
362
364 Type *LoadTy, const DataLayout &DL) {
365#ifndef NDEBUG
366 unsigned SrcValSize = DL.getTypeStoreSize(SrcVal->getType()).getFixedValue();
367 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedValue();
368 assert(Offset + LoadSize <= SrcValSize);
369#endif
370 return ConstantFoldLoadFromConst(SrcVal, LoadTy, APInt(32, Offset), DL);
371}
372
373/// This function is called when we have a
374/// memdep query of a load that ends up being a clobbering mem intrinsic.
376 Type *LoadTy, Instruction *InsertPt,
377 const DataLayout &DL) {
378 LLVMContext &Ctx = LoadTy->getContext();
379 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedValue() / 8;
380 IRBuilder<> Builder(InsertPt);
381
382 // We know that this method is only called when the mem transfer fully
383 // provides the bits for the load.
384 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
385 // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
386 // independently of what the offset is.
387 Value *Val = MSI->getValue();
388 if (LoadSize != 1)
389 Val =
390 Builder.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8));
391 Value *OneElt = Val;
392
393 // Splat the value out to the right number of bits.
394 for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) {
395 // If we can double the number of bytes set, do it.
396 if (NumBytesSet * 2 <= LoadSize) {
397 Value *ShVal = Builder.CreateShl(
398 Val, ConstantInt::get(Val->getType(), NumBytesSet * 8));
399 Val = Builder.CreateOr(Val, ShVal);
400 NumBytesSet <<= 1;
401 continue;
402 }
403
404 // Otherwise insert one byte at a time.
405 Value *ShVal =
406 Builder.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8));
407 Val = Builder.CreateOr(OneElt, ShVal);
408 ++NumBytesSet;
409 }
410
411 return coerceAvailableValueToLoadType(Val, LoadTy, Builder, DL);
412 }
413
414 // Otherwise, this is a memcpy/memmove from a constant global.
415 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
416 Constant *Src = cast<Constant>(MTI->getSource());
417 unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
418 return ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset),
419 DL);
420}
421
423 Type *LoadTy, const DataLayout &DL) {
424 LLVMContext &Ctx = LoadTy->getContext();
425 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedValue() / 8;
426
427 // We know that this method is only called when the mem transfer fully
428 // provides the bits for the load.
429 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
430 auto *Val = dyn_cast<ConstantInt>(MSI->getValue());
431 if (!Val)
432 return nullptr;
433
434 Val = ConstantInt::get(Ctx, APInt::getSplat(LoadSize * 8, Val->getValue()));
435 return ConstantFoldLoadFromConst(Val, LoadTy, DL);
436 }
437
438 // Otherwise, this is a memcpy/memmove from a constant global.
439 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
440 Constant *Src = cast<Constant>(MTI->getSource());
441 unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
442 return ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset),
443 DL);
444}
445} // namespace VNCoercion
446} // namespace llvm
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
IRTranslator LLVM IR MI
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Class for arbitrary precision integers.
Definition: APInt.h:78
static APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
Definition: APInt.cpp:624
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:157
This is an important base class in LLVM.
Definition: Constant.h:42
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
Common base class shared among various IRBuilders.
Definition: IRBuilder.h:113
Value * CreateZExtOrBitCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2162
Value * CreateIntToPtr(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2147
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:1480
Value * CreateBitCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2152
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1459
Value * CreatePtrToInt(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2142
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1540
Value * CreateTruncOrBitCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2178
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2705
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:311
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
An instruction for reading from memory.
Definition: Instructions.h:176
Value * getPointerOperand()
Definition: Instructions.h:255
This is the common base class for memset/memcpy/memmove.
This class wraps the llvm.memset and llvm.memset.inline intrinsics.
Value * getSource() const
This is just like getRawSource, but it strips off any cast instructions that feed it,...
This class wraps the llvm.memcpy/memmove intrinsics.
An instruction for storing to memory.
Definition: Instructions.h:292
Value * getValueOperand()
Definition: Instructions.h:378
Value * getPointerOperand()
Definition: Instructions.h:381
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isArrayTy() const
True if this is an instance of ArrayType.
Definition: Type.h:261
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:264
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
bool isStructTy() const
True if this is an instance of StructType.
Definition: Type.h:258
bool isTargetExtTy() const
Return true if this is a target extension type.
Definition: Type.h:203
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition: Type.h:128
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
Definition: Type.h:267
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:237
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition: Type.h:355
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition: TypeSize.h:171
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition: TypeSize.h:239
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
Value * getValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy, Instruction *InsertPt, const DataLayout &DL)
If analyzeLoadFromClobberingStore/Load returned an offset, this function can be used to actually perf...
Definition: VNCoercion.cpp:346
static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr, Value *WritePtr, uint64_t WriteSizeInBits, const DataLayout &DL)
This function is called when we have a memdep query of a load that ends up being a clobbering memory ...
Definition: VNCoercion.cpp:177
Value * coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy, IRBuilderBase &IRB, const DataLayout &DL)
If we saw a store of a value to memory, and then a load from a must-aliased pointer of a different ty...
Definition: VNCoercion.cpp:79
static Value * getStoreValueForLoadHelper(Value *SrcVal, unsigned Offset, Type *LoadTy, IRBuilderBase &Builder, const DataLayout &DL)
Definition: VNCoercion.cpp:297
int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr, StoreInst *DepSI, const DataLayout &DL)
This function determines whether a value for the pointer LoadPtr can be extracted from the store at D...
Definition: VNCoercion.cpp:215
Value * getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, Type *LoadTy, Instruction *InsertPt, const DataLayout &DL)
If analyzeLoadFromClobberingMemInst returned an offset, this function can be used to actually perform...
Definition: VNCoercion.cpp:375
Constant * getConstantValueForLoad(Constant *SrcVal, unsigned Offset, Type *LoadTy, const DataLayout &DL)
Definition: VNCoercion.cpp:363
int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI, const DataLayout &DL)
This function determines whether a value for the pointer LoadPtr can be extracted from the load at De...
Definition: VNCoercion.cpp:236
Constant * getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, Type *LoadTy, const DataLayout &DL)
Definition: VNCoercion.cpp:422
int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr, MemIntrinsic *DepMI, const DataLayout &DL)
This function determines whether a value for the pointer LoadPtr can be extracted from the memory int...
Definition: VNCoercion.cpp:250
static bool isFirstClassAggregateOrScalableType(Type *Ty)
Definition: VNCoercion.cpp:12
bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy, const DataLayout &DL)
Return true if CoerceAvailableValueToLoadType would succeed if it was called.
Definition: VNCoercion.cpp:17
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
Value * GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, const DataLayout &DL, bool AllowNonInbounds=true)
Analyze the specified pointer to see if it can be expressed as a base pointer plus a constant offset.
const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=6)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
Constant * ConstantFoldLoadFromConst(Constant *C, Type *Ty, const APInt &Offset, const DataLayout &DL)
Extract value of C at the given Offset reinterpreted as Ty.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition: Alignment.h:155
Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...