Open Source Python Artificial Intelligence Software

Browse free open source Python Artificial Intelligence Software and projects below. Use the toggles on the left to filter open source Python Artificial Intelligence Software by OS, license, language, programming language, and project status.

  • Auth0 for AI Agents now in GA Icon
    Auth0 for AI Agents now in GA

    Ready to implement AI with confidence (without sacrificing security)?

    Connect your AI agents to apps and data more securely, give users control over the actions AI agents can perform and the data they can access, and enable human confirmation for critical agent actions.
    Start building today
  • Trumba is an All-in-one Calendar Management and Event Registration platform Icon
    Trumba is an All-in-one Calendar Management and Event Registration platform

    Great for live, virtual and hybrid events

    Publish, promote and track your events more affordably and effectively—all in one place.
    Learn More
  • 1
    Ultimate Vocal Remover (UVR5)

    Ultimate Vocal Remover (UVR5)

    GUI for a Vocal Remover that uses Deep Neural Networks

    This application uses state-of-the-art source separation models to remove vocals from audio files. UVR's core developers trained all of the models provided in this package (except for the Demucs v3 and v4 4-stem models).
    Downloads: 403 This Week
    Last Update:
    See Project
  • 2
    InsightFace

    InsightFace

    State-of-the-art 2D and 3D Face Analysis Project

    State-of-the-art deep face analysis library. InsightFace is an open-source 2D&3D deep face analysis library. InsightFace is an integrated Python library for 2D&3D face analysis. InsightFace efficiently implements a wide variety of state-of-the-art algorithms for face recognition, face detection, and face alignment, which are optimized for both training and deployment. Research institutes and industrial organizations can get benefits from InsightFace library.
    Downloads: 303 This Week
    Last Update:
    See Project
  • 3
    Jarvis

    Jarvis

    Personal Assistant for Linux and macOS

    Jarvis is a simple personal assistant for Linux, MacOS and Windows which works on the command line. He can talk to you if you enable his voice. He can tell you the weather, he can find restaurants and other places near you. He can do some great stuff for you. In order to start Jarvis just clone this repository and run python installer. Run Jarvis from anywhere by command jarvis. You can start by typing help within the Jarvis command line to check what Jarvis can do for you. Plugins may be modified using the decorators @alias, @require and @complete. These special decorators may be used in any order or several times.Not all plugins are compatible with every system. To specify compatibility constraints, use the require-feature.
    Downloads: 162 This Week
    Last Update:
    See Project
  • 4
    LabelImg

    LabelImg

    Graphical image annotation tool and label object bounding boxes

    LabelImg is a graphical image annotation tool. It is written in Python and uses Qt for its graphical interface. Annotations are saved as XML files in PASCAL VOC format, the format used by ImageNet. Besides, it also supports YOLO and CreateML formats. Linux/Ubuntu/Mac requires at least Python 2.6 and has been tested with PyQt 4.8. However, Python 3 or above and PyQt5 are strongly recommended. Virtualenv can avoid a lot of the QT / Python version issues. Build and launch using the instructions. Click 'Change default saved annotation folder' in Menu/File. Click 'Open Dir'. Click 'Create RectBox'. Click and release left mouse to select a region to annotate the rect box. You can use right mouse to drag the rect box to copy or move it. The annotation will be saved to the folder you specify. You can refer to the hotkeys to speed up your workflow.
    Downloads: 123 This Week
    Last Update:
    See Project
  • Failed Payment Recovery for Subscription Businesses Icon
    Failed Payment Recovery for Subscription Businesses

    For subscription companies searching for a failed payment recovery solution to grow revenue, and retain customers.

    FlexPay’s innovative platform uses multiple technologies to achieve the highest number of retained customers, resulting in reduced involuntary churn, longer life span after recovery, and higher revenue. Leading brands like LegalZoom, Hooked on Phonics, and ClinicSense trust FlexPay to recover failed payments, reduce churn, and increase customer lifetime value.
    Learn More
  • 5
    GPT4All

    GPT4All

    Run Local LLMs on Any Device. Open-source

    GPT4All is an open-source project that allows users to run large language models (LLMs) locally on their desktops or laptops, eliminating the need for API calls or GPUs. The software provides a simple, user-friendly application that can be downloaded and run on various platforms, including Windows, macOS, and Ubuntu, without requiring specialized hardware. It integrates with the llama.cpp implementation and supports multiple LLMs, allowing users to interact with AI models privately. This project also supports Python integrations for easy automation and customization. GPT4All is ideal for individuals and businesses seeking private, offline access to powerful LLMs.
    Downloads: 79 This Week
    Last Update:
    See Project
  • 6
    DeepSeek R1

    DeepSeek R1

    Open-source, high-performance AI model with advanced reasoning

    DeepSeek-R1 is an open-source large language model developed by DeepSeek, designed to excel in complex reasoning tasks across domains such as mathematics, coding, and language. DeepSeek R1 offers unrestricted access for both commercial and academic use. The model employs a Mixture of Experts (MoE) architecture, comprising 671 billion total parameters with 37 billion active parameters per token, and supports a context length of up to 128,000 tokens. DeepSeek-R1's training regimen uniquely integrates large-scale reinforcement learning (RL) without relying on supervised fine-tuning, enabling the model to develop advanced reasoning capabilities. This approach has resulted in performance comparable to leading models like OpenAI's o1, while maintaining cost-efficiency. To further support the research community, DeepSeek has released distilled versions of the model based on architectures such as LLaMA and Qwen.
    Downloads: 72 This Week
    Last Update:
    See Project
  • 7
    DeepSeek-V3

    DeepSeek-V3

    Powerful AI language model (MoE) optimized for efficiency/performance

    DeepSeek-V3 is a robust Mixture-of-Experts (MoE) language model developed by DeepSeek, featuring a total of 671 billion parameters, with 37 billion activated per token. It employs Multi-head Latent Attention (MLA) and the DeepSeekMoE architecture to enhance computational efficiency. The model introduces an auxiliary-loss-free load balancing strategy and a multi-token prediction training objective to boost performance. Trained on 14.8 trillion diverse, high-quality tokens, DeepSeek-V3 underwent supervised fine-tuning and reinforcement learning to fully realize its capabilities. Evaluations indicate that it outperforms other open-source models and rivals leading closed-source models, achieving this with a training duration of 55 days on 2,048 Nvidia H800 GPUs, costing approximately $5.58 million.
    Downloads: 62 This Week
    Last Update:
    See Project
  • 8
    DeepSeek-V3.2-Exp

    DeepSeek-V3.2-Exp

    An experimental version of DeepSeek model

    DeepSeek-V3.2-Exp is an experimental release of the DeepSeek model family, intended as a stepping stone toward the next generation architecture. The key innovation in this version is DeepSeek Sparse Attention (DSA), a sparse attention mechanism that aims to optimize training and inference efficiency in long-context settings without degrading output quality. According to the authors, they aligned the training setup of V3.2-Exp with V3.1-Terminus so that benchmark results remain largely comparable, even though the internal attention mechanism changes. In public evaluations across a variety of reasoning, code, and question-answering benchmarks (e.g. MMLU, LiveCodeBench, AIME, Codeforces, etc.), V3.2-Exp shows performance very close to or in some cases matching that of V3.1-Terminus. The repository includes tools and kernels to support the new sparse architecture—for instance, CUDA kernels, logit indexers, and open-source modules like FlashMLA and DeepGEMM are invoked for performance.
    Downloads: 41 This Week
    Last Update:
    See Project
  • 9
    DiffSinger

    DiffSinger

    Singing Voice Synthesis via Shallow Diffusion Mechanism

    DiffSinger is an open-source PyTorch implementation of a diffusion-based acoustic model for singing-voice synthesis (SVS) and also text-to-speech (TTS) in a related variant. The core idea is to view generation of a sung voice (mel-spectrogram) as a diffusion process: starting from noise, the model iteratively “denoises” while being conditioned on a music score (lyrics, pitch, musical timing). This avoids some of the typical problems of prior SVS models — like over-smoothing or unstable GAN training — and produces more realistic, expressive, and natural-sounding singing. The method introduces a “shallow diffusion” mechanism: instead of diffusing over many steps, generation begins at a shallow step determined adaptively, which leverages prior knowledge learned by a simple mel-spectrogram decoder and speeds up inference.
    Downloads: 36 This Week
    Last Update:
    See Project
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 10
    Demucs

    Demucs

    Code for the paper Hybrid Spectrogram and Waveform Source Separation

    Demucs (Deep Extractor for Music Sources) is a deep-learning framework for music source separation—extracting individual instrument or vocal tracks from a mixed audio file. The system is based on a U-Net-like convolutional architecture combined with recurrent and transformer elements to capture both short-term and long-term temporal structure. It processes raw waveforms directly rather than spectrograms, allowing for higher-quality reconstruction and fewer artifacts in separated tracks. The repository includes pretrained models for common tasks such as isolating vocals, drums, bass, and accompaniment from stereo music, achieving state-of-the-art results in benchmarks like MUSDB18. Demucs supports GPU-accelerated inference and can process multi-channel audio with chunked streaming for real-time or batch operation. It also provides training scripts and utilities to fine-tune on custom datasets, along with remixing and enhancement tools.
    Downloads: 32 This Week
    Last Update:
    See Project
  • 11
    Lyrebird

    Lyrebird

    Simple and powerful voice changer for Linux, written with Python & GTK

    Simple and powerful voice changer for Linux, written with Python & GTK.
    Downloads: 25 This Week
    Last Update:
    See Project
  • 12
    GPT-SoVITS

    GPT-SoVITS

    1 min voice data can also be used to train a good TTS model

    GPT‑SoVITS is a state-of-the-art voice conversion and TTS system that enables zero‑shot and few‑shot synthesis based on a short vocal sample (e.g., 5 seconds). It supports cross‑lingual speech synthesis across English, Chinese, Japanese, Korean, Cantonese, and more. It's powered by VITS architecture enhanced for few‑sample adaptation and real‑time usability.
    Downloads: 23 This Week
    Last Update:
    See Project
  • 13
    Stable Diffusion

    Stable Diffusion

    High-Resolution Image Synthesis with Latent Diffusion Models

    Stable Diffusion Version 2. The Stable Diffusion project, developed by Stability AI, is a cutting-edge image synthesis model that utilizes latent diffusion techniques for high-resolution image generation. It offers an advanced method of generating images based on text input, making it highly flexible for various creative applications. The repository contains pretrained models, various checkpoints, and tools to facilitate image generation tasks, such as fine-tuning and modifying the models. Stability AI's approach to image synthesis has contributed to creating detailed, scalable images while maintaining efficiency.
    Downloads: 216 This Week
    Last Update:
    See Project
  • 14
    Frigate

    Frigate

    NVR with realtime local object detection for IP cameras

    Frigate - NVR With Realtime Object Detection for IP Cameras A complete and local NVR designed for Home Assistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras. Use of a Google Coral Accelerator is optional, but highly recommended. The Coral will outperform even the best CPUs and can process 100+ FPS with very little overhead.
    Downloads: 22 This Week
    Last Update:
    See Project
  • 15
    deepface

    deepface

    A Lightweight Face Recognition and Facial Attribute Analysis

    DeepFace is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid face recognition framework wrapping state-of-the-art models: VGG-Face, FaceNet, OpenFace, DeepFace, DeepID, ArcFace, Dlib, SFace and GhostFaceNet. Experiments show that human beings have 97.53% accuracy on facial recognition tasks whereas those models already reached and passed that accuracy level.
    Downloads: 19 This Week
    Last Update:
    See Project
  • 16
    MoneyPrinterTurbo

    MoneyPrinterTurbo

    Generate short videos with one click using AI LLM

    MoneyPrinterTurbo is an AI-driven tool that enables users to generate high-definition short videos with minimal input. By providing a topic or keyword, the system automatically creates video scripts, sources relevant media assets, adds subtitles, and incorporates background music, resulting in a polished video ready for distribution.
    Downloads: 15 This Week
    Last Update:
    See Project
  • 17
    OpenHands

    OpenHands

    Open-source autonomous AI software engineer

    Welcome to OpenHands (formerly OpenDevin), an open-source autonomous AI software engineer who is capable of executing complex engineering tasks and collaborating actively with users on software development projects. Use AI to tackle the toil in your backlog, so you can focus on what matters: hard problems, creative challenges, and over-engineering your dotfiles We believe agentic technology is too important to be controlled by a few corporations. So we're building all our agents in the open on GitHub, under the MIT license. Our agents can do anything a human developer can: they write code, run commands, and use the web. We're partnering with AI safety experts like Invariant Labs to balance innovation with security.
    Downloads: 15 This Week
    Last Update:
    See Project
  • 18
    kokoro-onnx

    kokoro-onnx

    TTS with kokoro and onnx runtime

    kokoro-onnx is a text-to-speech toolkit that wraps the Kokoro neural TTS model in an easy-to-use ONNX Runtime interface, so you can generate speech from Python with minimal setup. It focuses on running efficiently on commodity hardware, including macOS with Apple Silicon, while still delivering near real-time performance for many use cases. The project ships prebuilt model files and a simple example script, so you can go from installation to producing an audio.wav file in just a few steps. It supports multiple languages and voices, with a curated voice list and configuration via a VOICES file hosted alongside the models. The package is distributed on PyPI, meaning you can integrate it directly into applications or scripts using standard Python tooling. It also recommends pairing with an external G2P package to improve pronunciation quality, especially for more complex languages or names, and is licensed under permissive MIT and Apache-style licenses.
    Downloads: 15 This Week
    Last Update:
    See Project
  • 19
    pomegranate

    pomegranate

    Fast, flexible and easy to use probabilistic modelling in Python

    pomegranate is a library for probabilistic modeling defined by its modular implementation and treatment of all models as the probability distributions they are. The modular implementation allows one to easily drop normal distributions into a mixture model to create a Gaussian mixture model just as easily as dropping a gamma and a Poisson distribution into a mixture model to create a heterogeneous mixture. But that's not all! Because each model is treated as a probability distribution, Bayesian networks can be dropped into a mixture just as easily as a normal distribution, and hidden Markov models can be dropped into Bayes classifiers to make a classifier over sequences. Together, these two design choices enable a flexibility not seen in any other probabilistic modeling package.
    Downloads: 15 This Week
    Last Update:
    See Project
  • 20
    InvokeAI

    InvokeAI

    InvokeAI is a leading creative engine for Stable Diffusion models

    InvokeAI is an implementation of Stable Diffusion, the open source text-to-image and image-to-image generator. It provides a streamlined process with various new features and options to aid the image generation process. It runs on Windows, Mac and Linux machines, and runs on GPU cards with as little as 4 GB or RAM. InvokeAI is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies. InvokeAI offers an industry leading Web Interface, interactive Command Line Interface, and also serves as the foundation for multiple commercial products. This fork is supported across Linux, Windows and Macintosh. Linux users can use either an Nvidia-based card (with CUDA support) or an AMD card (using the ROCm driver). We do not recommend the GTX 1650 or 1660 series video cards. They are unable to run in half-precision mode and do not have sufficient VRAM to render 512x512 images.
    Downloads: 14 This Week
    Last Update:
    See Project
  • 21
    GPT Computer Assistant

    GPT Computer Assistant

    gpt-4o for windows, macos and linux

    This is an alternative work for providing ChatGPT MacOS app to Windows and Linux. In this way, this is a fresh and stable work. You can easily install as a Python library for this time but we will prepare a pipeline for providing native install scripts (.exe).
    Downloads: 13 This Week
    Last Update:
    See Project
  • 22
    Applio

    Applio

    A simple, high-quality voice conversion tool focused on ease of use

    Applio is a high-quality voice conversion toolkit designed to make modern RVC/VITS-based voice cloning accessible to non-experts. It focuses strongly on ease of use: installation scripts for Windows, Linux, and macOS set up dependencies and then launch a browser-based Gradio interface. Within that interface, users can train and run voice conversion models for tasks like singing conversion, speech-to-speech transformation, and voice cloning. The project is structured to be flexible through plugins and configurations so users can extend functionality without touching the core code. Applio is considered stable and mature; ongoing development is now centered on security patches, dependency maintenance, and occasional improvements, which makes it attractive for production or repeatable workflows. It also includes TensorBoard helper scripts so people training custom models can monitor metrics and experiment more systematically.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 23
    llama.cpp Python Bindings

    llama.cpp Python Bindings

    Python bindings for llama.cpp

    llama-cpp-python provides Python bindings for llama.cpp, enabling the integration of LLaMA (Large Language Model Meta AI) language models into Python applications. This facilitates the use of LLaMA's capabilities in natural language processing tasks within Python environments.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 24
    DINOv3

    DINOv3

    Reference PyTorch implementation and models for DINOv3

    DINOv3 is the third-generation iteration of Meta’s self-supervised visual representation learning framework, building upon the ideas from DINO and DINOv2. It continues the paradigm of learning strong image representations without labels using teacher–student distillation, but introduces a simplified and more scalable training recipe that performs well across datasets and architectures. DINOv3 removes the need for complex augmentations or momentum encoders, streamlining the pipeline while maintaining or improving feature quality. The model supports multiple backbone architectures, including Vision Transformers (ViT), and can handle larger image resolutions with improved stability during training. The learned embeddings generalize robustly across tasks like classification, retrieval, and segmentation without fine-tuning, showing state-of-the-art transfer performance among self-supervised models.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 25
    DeepSeek-OCR

    DeepSeek-OCR

    Contexts Optical Compression

    DeepSeek-OCR is an open-source optical character recognition solution built as part of the broader DeepSeek AI vision-language ecosystem. It is designed to extract text from images, PDFs, and scanned documents, and integrates with multimodal capabilities that understand layout, context, and visual elements beyond raw character recognition. The system treats OCR not simply as “read the text” but as “understand what the text is doing in the image”—for example distinguishing captions from body text, interpreting tables, or recognizing handwritten versus printed words. It supports local deployment, enabling organizations concerned about privacy or latency to run the pipeline on-premises rather than send sensitive documents to third-party cloud services. The codebase is written in Python with a focus on modularity: you can swap preprocessing, recognition, and post-processing components as needed for custom workflows.
    Downloads: 11 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next