Julia Frameworks for ChromeOS

Browse free open source Julia Frameworks for ChromeOS and projects below. Use the toggles on the left to filter open source Julia Frameworks for ChromeOS by OS, license, language, programming language, and project status.

  • imgproxy – the fastest, most flexible image processing server Icon
    imgproxy – the fastest, most flexible image processing server

    AI-powered self-hosted image processing server

    imgproxy is a high-performance, secure, and open-source image processing server that gives you full control over your media pipeline. Whether you’re looking for a faster alternative to existing open-source tools, moving away from an expensive SaaS solution, or replacing a costly in-house system, imgproxy is built to handle all your image processing needs.
    Learn More
  • Network Discovery Software | JDisc Discovery Icon
    Network Discovery Software | JDisc Discovery

    JDisc Discovery supports the IT organizationss of medium-sized businesses and large-scale enterprises.

    JDisc Discovery is a comprehensive network inventory and IT asset management solution designed to help organizations gain clear, up-to-date visibility into their IT environment. It automatically scans and maps devices across the network, including servers, workstations, virtual machines, and network hardware, to create a detailed inventory of all connected assets. This includes critical information such as hardware configurations, software installations, patch levels, and relationshipots between devices.
    Learn More
  • 1
    MLJBase.jl

    MLJBase.jl

    Core functionality for the MLJ machine learning framework

    Repository for developers that provides core functionality for the MLJ machine learning framework. MLJ is a Julia framework for combining and tuning machine learning models. This repository provides core functionality for MLJ.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 2
    Trixi.jl

    Trixi.jl

    Trixi.jl: Adaptive high-order numerical simulations of hyperbolic PDEs

    Trixi.jl is a numerical simulation framework for hyperbolic conservation laws written in Julia. A key objective for the framework is to be useful to both scientists and students. Therefore, next to having an extensible design with a fast implementation, Trixi.jl is focused on being easy to use for new or inexperienced users, including the installation and postprocessing procedures.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    Catlab.jl

    Catlab.jl

    A framework for applied category theory in the Julia language

    Catlab.jl is a framework for applied and computational category theory, written in the Julia language. Catlab provides a programming library and interactive interface for applications of category theory to scientific and engineering fields. It emphasizes monoidal categories due to their wide applicability but can support any categorical structure that is formalizable as a generalized algebraic theory. First and foremost, Catlab provides data structures, algorithms, and serialization for applied category theory. Macros offer a convenient syntax for specifying categorical doctrines and type-safe symbolic manipulation systems. Wiring diagrams (aka string diagrams) are supported through specialized data structures and can be serialized to and from GraphML (an XML-based format) and JSON.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    Clapeyron

    Clapeyron

    Framework for the development and use of fluid-thermodynamic models

    Welcome to Clapeyron! This module provides both a large library of thermodynamic models and a framework for one to easily implement their own models. Clapeyron provides a framework for the development and use of fluid-thermodynamic models, including SAFT, cubic, activity, multi-parameter, and COSMO-SAC.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Intelligent Credit-to-Cash Solutions for Global Finance Teams Icon
    Intelligent Credit-to-Cash Solutions for Global Finance Teams

    AI-driven credit-to-cash solutions powered by Dun & Bradstreet’s

    D&B Finance Analytics provides AI-driven solutions powered by the Dun & Bradstreet Data Cloud. Intelligent, flexible, and easy to use, D&B Finance Analytics helps finance teams to manage risk, increase operational efficiency, reduce cost, and improve the customer experience.
    Learn More
  • 5
    AbstractFFTs.jl

    AbstractFFTs.jl

    A Julia framework for implementing FFTs

    A general framework for fast Fourier transforms (FFTs) in Julia. This package is mainly not intended to be used directly. Instead, developers of packages that implement FFTs (such as FFTW.jl or FastTransforms.jl) extend the types/functions defined in AbstractFFTs. This allows multiple FFT packages to co-exist with the same underlying fft(x) and plan_fft(x) interface.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Agents.jl

    Agents.jl

    Agent-based modeling framework in Julia

    Agents.jl is a pure Julia framework for agent-based modeling (ABM): a computational simulation methodology where autonomous agents react to their environment (including other agents) given a predefined set of rules. The simplicity of Agents.jl is due to the intuitive space-agnostic modeling approach we have implemented: agent actions are specified using generically named functions (such as "move agent" or "find nearby agents") that do not depend on the actual space the agents exist in, nor on the properties of the agents themselves. Overall this leads to ultra-fast model prototyping where even changing the space the agents live in is a matter of only a couple of lines of code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    AppleAccelerate.jl

    AppleAccelerate.jl

    Julia interface to the macOS Accelerate framework

    Julia interface to the macOS Accelerate framework. This provides a Julia interface to some of the macOS Accelerate frameworks. At the moment, this package provides access to Accelerate BLAS and LAPACK using the libblastrampoline framework, an interface to the array-oriented functions, which provide a vectorized form for many common mathematical functions. The performance is significantly better than using standard libm functions in some cases, though there does appear to be some reduced accuracy.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    BenchmarkTools.jl

    BenchmarkTools.jl

    A benchmarking framework for the Julia language

    BenchmarkTools makes performance tracking of Julia code easy by supplying a framework for writing and running groups of benchmarks as well as comparing benchmark results. This package is used to write and run the benchmarks found in BaseBenchmarks.jl. The CI infrastructure for automated performance testing of the Julia language is not in this package but can be found in Nanosoldier.jl. Our story begins with two packages, "Benchmarks" and "BenchmarkTrackers". The Benchmarks package implemented an execution strategy for collecting and summarizing individual benchmark results, while BenchmarkTrackers implemented a framework for organizing, running, and determining regressions of groups of benchmarks. Under the hood, BenchmarkTrackers relied on Benchmarks for actual benchmark execution.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    ConcurrentSim.jl

    ConcurrentSim.jl

    Discrete event process oriented simulation framework written in Julia

    A discrete event process-oriented simulation framework written in Julia inspired by the Python library SimPy. One of the longest-lived Julia packages (originally under the name SimJulia).
    Downloads: 0 This Week
    Last Update:
    See Project
  • Run your private office with the ONLYOFFICE Icon
    Run your private office with the ONLYOFFICE

    Secure office and productivity apps

    A Comprehensive Alternative to Office 365 for Business
    Learn More
  • 10
    GeoStats.jl

    GeoStats.jl

    An extensible framework for geospatial data science

    GeoStats.jl is a Julia framework for geospatial data science and geostatistical modeling. It’s fully implemented in Julia and designed to provide an extensible, high-performance stack that handles spatial domains, interpolation, simulation, learning, and visualization. The package is modular: it breaks out geometry, spatial domains, transforms, variograms, covariance models, and modeling into subpackages (e.g., GeoStatsBase, GeoStatsModels, GeoStatsTransforms). Users can represent georeferenced tables (points + attributes), define domains (grids, meshes, structured/unstructured), and then apply geostatistical operations such as kriging, interpolation, simulation, variogram estimation, and learning-based prediction. Visualization is supported via integration with Makie.jl to produce spatial renderings, mesh visualizations, and variable overlays.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    InvertibleNetworks.jl

    InvertibleNetworks.jl

    A Julia framework for invertible neural networks

    Building blocks for invertible neural networks in the Julia programming language.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    JuliaFEM.jl

    JuliaFEM.jl

    The JuliaFEM software library is a framework

    The JuliaFEM software library is a framework that allows for the distributed processing of large Finite Element Models across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage. The JuliaFEM software library is a framework that allows for the distributed processing of large Finite Element Models across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage. The basic design principle is: that everything is nonlinear. All physics models are nonlinear from which the linearization are made as special cases.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    MLJ

    MLJ

    A Julia machine learning framework

    MLJ (Machine Learning in Julia) is a toolbox written in Julia providing a common interface and meta-algorithms for selecting, tuning, evaluating, composing and comparing about 200 machine learning models written in Julia and other languages. The functionality of MLJ is distributed over several repositories illustrated in the dependency chart below. These repositories live at the JuliaAI umbrella organization.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Mocha.jl

    Mocha.jl

    Deep Learning framework for Julia

    Mocha.jl is a deep learning framework for Julia, inspired by the C++ Caffe framework. It offers efficient implementations of gradient descent solvers and common neural network layers, supports optional unsupervised pre-training, and allows switching to a GPU backend for accelerated performance. The development of Mocha.jl happens in relative early days of Julia. Now that both Julia and the ecosystem has evolved significantly, and with some exciting new tech such as writing GPU kernels directly in Julia and general auto-differentiation supports, the Mocha codebase becomes excessively old and primitive. Reworking Mocha with new technologies requires some non-trivial efforts, and new exciting solutions already exist nowadays, it is a good time for the retirement of Mocha.jl. Mocha has a clean architecture with isolated components like network layers, activation functions, solvers, regularizers, initializers, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    ReTest.jl

    ReTest.jl

    Testing framework for Julia

    ReTest is a testing framework for Julia allowing defining tests in source files, whose execution is deferred and triggered on demand. This is useful when one likes to have definitions of methods and corresponding tests close to each other. This is also useful for code that is not (yet) organized as a package, and where one doesn't want to maintain a separate set of files for tests. Filtering run testsets with a Regex, which is matched against the descriptions of testsets. This is useful for running only part of the test suite of a package. For example, if you made a change related to addition, and included "addition" in the description of the corresponding testsets, you can easily run only these tests.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    StructuralEquationModels.jl

    StructuralEquationModels.jl

    A fast and flexible Structural Equation Modelling Framework

    This is a package for Structural Equation Modeling in development. It is written for extensibility, that is, you can easily define your own objective functions and other parts of the model. At the same time, it is (very) fast. We provide fast objective functions, gradients, and for some cases hessians as well as approximations thereof. As a user, you can easily define custom loss functions. For those, you can decide to provide analytical gradients or use finite difference approximation / automatic differentiation. You can choose to mix loss functions natively found in this package and those you provide. In such cases, you optimize over a sum of different objectives (e.g. ML + Ridge). This strategy also applies to gradients, where you may supply analytic gradients or opt for automatic differentiation or mixed analytical and automatic differentiation. You may consider using this package if you need extensibility and/or speed, and if you want to extend SEM.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next