Compare the Top Data Labeling Software in India as of January 2026

What is Data Labeling Software in India?

Data labeling software is a tool that assists in the organization and categorization of large datasets. Data labeling tools enable data to be labeled with relevant tags depending on the purpose such as for machine learning, image annotation, or text classification. Data labeling software can also assist in categorizing input from customers so businesses can better understand their needs and preferences. The software typically comes with different features such as automated labeling, collaboration tools, and scaleable solutions to handle larger datasets. Compare and read user reviews of the best Data Labeling software in India currently available using the table below. This list is updated regularly.

  • 1
    Supervisely

    Supervisely

    Supervisely

    The leading platform for entire computer vision lifecycle. Iterate from image annotation to accurate neural networks 10x faster. With our best-in-class data labeling tools transform your images / videos / 3d point cloud into high-quality training data. Train your models, track experiments, visualize and continuously improve model predictions, build custom solution within the single environment. Our self-hosted solution guaranties data privacy, powerful customization capabilities, and easy integration into your technology stack. A turnkey solution for Computer Vision: multi-format data annotation & management, quality control at scale and neural networks training in end-to-end platform. Inspired by professional video editing software, created by data scientists for data scientists — the most powerful video labeling tool for machine learning and more.
  • 2
    Automaton AI

    Automaton AI

    Automaton AI

    With Automaton AI’s ADVIT, create, manage and develop high-quality training data and DNN models all in one place. Optimize the data automatically and prepare it for each phase of the computer vision pipeline. Automate the data labeling processes and streamline data pipelines in-house. Manage the structured and unstructured video/image/text datasets in runtime and perform automatic functions that refine your data in preparation for each step of the deep learning pipeline. Upon accurate data labeling and QA, you can train your own model. DNN training needs hyperparameter tuning like batch size, learning, rate, etc. Optimize and transfer learning on trained models to increase accuracy. Post-training, take the model to production. ADVIT also does model versioning. Model development and accuracy parameters can be tracked in run-time. Increase the model accuracy with a pre-trained DNN model for auto-labeling.
  • Previous
  • You're on page 1
  • Next