Best Retrieval-Augmented Generation (RAG) Software

Compare the Top Retrieval-Augmented Generation (RAG) Software as of December 2025

What is Retrieval-Augmented Generation (RAG) Software?

Retrieval-Augmented Generation (RAG) tools are advanced AI systems that combine information retrieval with text generation to produce more accurate and contextually relevant outputs. These tools first retrieve relevant data from a vast corpus or database, and then use that information to generate responses or content, enhancing the accuracy and detail of the generated text. RAG tools are particularly useful in applications requiring up-to-date information or specialized knowledge, such as customer support, content creation, and research. By leveraging both retrieval and generation capabilities, RAG tools improve the quality of responses in tasks like question-answering and summarization. This approach bridges the gap between static knowledge bases and dynamic content generation, providing more reliable and context-aware results. Compare and read user reviews of the best Retrieval-Augmented Generation (RAG) software currently available using the table below. This list is updated regularly.

  • 1
    Vertex AI
    Vertex AI Search is a powerful, scalable enterprise search solution from Google Cloud, designed to deliver Google-quality search experiences across websites, intranets, and custom applications. The platform leverages advanced crawling, document understanding, and generative AI capabilities to provide highly relevant search results. It integrates seamlessly with existing business systems and supports features like real-time updates, vector search, and RAG (Retrieval Augmented Generation) for enhancing generative AI applications. Vertex AI Search is tailored for industries such as retail, healthcare, and media, offering specialized solutions that improve both search performance and customer engagement.
    Starting Price: Free ($300 in free credits)
    View Software
    Visit Website
  • 2
    Azure AI Search
    Deliver high-quality responses with a vector database built for advanced retrieval augmented generation (RAG) and modern search. Focus on exponential growth with an enterprise-ready vector database that comes with security, compliance, and responsible AI practices built in. Build better applications with sophisticated retrieval strategies backed by decades of research and customer validation. Quickly deploy your generative AI app with seamless platform and data integrations for data sources, AI models, and frameworks. Automatically upload data from a wide range of supported Azure and third-party sources. Streamline vector data processing with built-in extraction, chunking, enrichment, and vectorization, all in one flow. Support for multivector, hybrid, multilingual, and metadata filtering. Move beyond vector-only search with keyword match scoring, reranking, geospatial search, and autocomplete.
    Starting Price: $0.11 per hour
  • 3
    Ragie

    Ragie

    Ragie

    Ragie streamlines data ingestion, chunking, and multimodal indexing of structured and unstructured data. Connect directly to your own data sources, ensuring your data pipeline is always up-to-date. Built-in advanced features like LLM re-ranking, summary index, entity extraction, flexible filtering, and hybrid semantic and keyword search help you deliver state-of-the-art generative AI. Connect directly to popular data sources like Google Drive, Notion, Confluence, and more. Automatic syncing keeps your data up-to-date, ensuring your application delivers accurate and reliable information. With Ragie connectors, getting your data into your AI application has never been simpler. With just a few clicks, you can access your data where it already lives. Automatic syncing keeps your data up-to-date ensuring your application delivers accurate and reliable information. The first step in a RAG pipeline is to ingest the relevant data. Use Ragie’s simple APIs to upload files directly.
    Starting Price: $500 per month
  • 4
    BGE

    BGE

    BGE

    BGE (BAAI General Embedding) is a comprehensive retrieval toolkit designed for search and Retrieval-Augmented Generation (RAG) applications. It offers inference, evaluation, and fine-tuning capabilities for embedding models and rerankers, facilitating the development of advanced information retrieval systems. The toolkit includes components such as embedders and rerankers, which can be integrated into RAG pipelines to enhance search relevance and accuracy. BGE supports various retrieval methods, including dense retrieval, multi-vector retrieval, and sparse retrieval, providing flexibility to handle different data types and retrieval scenarios. The models are available through platforms like Hugging Face, and the toolkit provides tutorials and APIs to assist users in implementing and customizing their retrieval systems. By leveraging BGE, developers can build robust and efficient search solutions tailored to their specific needs.
    Starting Price: Free
  • 5
    Mixedbread

    Mixedbread

    Mixedbread

    Mixedbread is a fully-managed AI search engine that allows users to build production-ready AI search and Retrieval-Augmented Generation (RAG) applications. It offers a complete AI search stack, including vector stores, embedding and reranking models, and document parsing. Users can transform raw data into intelligent search experiences that power AI agents, chatbots, and knowledge systems without the complexity. It integrates with tools like Google Drive, SharePoint, Notion, and Slack. Its vector stores enable users to build production search engines in minutes, supporting over 100 languages. Mixedbread's embedding and reranking models have achieved over 50 million downloads and outperform OpenAI in semantic search and RAG tasks while remaining open-source and cost-effective. The document parser extracts text, tables, and layouts from PDFs, images, and complex documents, providing clean, AI-ready content without manual preprocessing.
  • Previous
  • You're on page 1
  • Next