
语义学与NLP
文章平均质量分 92
训意学
涉及自然语言处理(NLP)、知识图谱、认知科学、脑神经科学、系统科学(信息论)、哲学、符号学、逻辑学、中国传统语言文字学(训诂学、文字学、音韵学)、语义学(认知语义学)等交叉学科领域,致力于深层语义分析,探索人类底层逻辑一致性的规律。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
探寻跨语言统一真理及其对NLP的未来启示
本文旨在深入探讨语义学领域的核心争议:是否存在一种跨越语言与文化的统一语义真理(Unified Semantic Truth)。报告首先剖析了以形式逻辑为基础的形式语义学与以具身经验为核心的认知语言学之间的理论分野,指出了二者在“意义”本质上的根本分歧。随后,报告整合了最新的语言学、计算语言学及认知神经科学研究,特别是2024至2025年间的进展,以评估“语义普遍性”的实证依据。研究发现,尽管绝对的、无例外的普遍性备受争议,但越来越多的证据指向人类语言背后共享的神经认知基础,如“语义枢纽假说”(Semant原创 2025-08-26 22:28:27 · 525 阅读 · 0 评论 -
跨语言统一语义真理及其对NLP深层分析影响
《跨语言统一语义真理的探索与挑战》摘要 本文探讨了是否存在跨语言文化的统一语义真理这一核心问题。报告比较了形式语义学(基于逻辑真值条件)与认知语言学(源于具身经验)的理论差异,指出前者强调精确计算而后者关注经验映射。研究显示,虽然2025年的多语言模型(如XLM-R)验证了某些语义共性,但形式化仍面临两大障碍:二值逻辑难以处理语义模糊性,以及深层语义的复杂嵌套结构。若能构建兼容形式逻辑与认知内容的统一理论,将显著提升NLP模型的可解释性,突破当前黑箱困境。报告认为,统一语义真理应是动态演进的认知共识,其实现原创 2025-08-25 22:03:44 · 1536 阅读 · 0 评论 -
跨语言文化的统一语义真理:存在性、形式化及其对自然语言处理(NLP)深层语义分析的影响
摘要:本文探讨了语言理解的核心问题——是否存在跨语言文化的"统一语义真理"。研究对比了形式语义学(逻辑化、可计算)和认知语言学(具身经验、隐喻映射)两大理论范式,分析了二者在语义解释上的互补性。当前语义形式化面临模糊性、隐喻嵌套等计算挑战,而神经-符号方法被视为潜在突破方向。若实现理论整合,将推动NLP从统计模式匹配迈向可解释的深层推理,但需建立专门的认知评估体系。研究认为统一语义真理应是动态认知共识,其实现将促进AI对人类心智本质的理解。原创 2025-08-24 22:50:31 · 973 阅读 · 0 评论 -
语义普遍性与形式化:构建深层语义理解的统一框架
本文探讨构建统一语义理论框架的可能性及其对自然语言处理的影响。研究指出,不同语言在隐喻映射、词义引申和范畴化等方面存在普遍共性,表明人类具有共享概念结构。为实现机器深层语义理解,需将认知语言学发现与形式化建模(如逻辑表示、知识图谱)相结合。这种融合框架有望突破当前NLP技术在语义解析、复杂推理方面的局限。研究还分析了知识动态性、计算复杂性等核心挑战,提出整合大型语言模型与知识图谱的解决方案。该探索不仅将提升AI语言能力,也有助于深化对人类认知本质的理解。原创 2025-08-23 23:01:56 · 781 阅读 · 0 评论 -
意象驱动的深层语义:感知认知统一对自然语言处理与知识图谱的影响
摘要:本文探讨了将汉语同源词理论中的"意象驱动深层语义"模型与现代自然语言处理(NLP)及知识图谱(KG)技术相融合的可能性。基于黄易青《上古汉语同源词意义系统研究》的核心理论,文章分析了词源意义与词汇意义的区别,阐述了"意象"作为联结感官经验与抽象概念的动态认知图式的关键作用,以及意义运动推动意象层级转化的规律。研究从技术融合、知识表示和认知模型三个维度,提出了这一理论对NLP和KG的潜在影响,包括构建多层次语义关联的知识图谱架构和探索感知与认知统一的神经符号AI系原创 2025-08-21 22:45:07 · 942 阅读 · 0 评论 -
意象驱动下的感知与认知信息结构:上古汉语同源词研究视角——基于黄易青《上古汉语同源词意义系统研究》的理论框架
摘要:黄易青在《上古汉语同源词意义系统研究》中提出,意象作为连接感知与认知的桥梁,是词汇意义系统的核心机制。意象源于身体经验,是对事物动态运动特征的主观建构,并通过语音形式(如上古声母)与语义形成系统关联。研究揭示了意象在感知范畴内部(如不同发音部位对应不同分割意象)和跨感知-认知模态(如从触觉"抵抗"到心智"坚韧"的隐喻映射)中的统一作用。这一框架不仅为具身认知理论提供了语言学证据,也为构建神经符号AI提供了启示,即通过意象特征实现从感知到抽象概念的跨域迁移。该研究原创 2025-08-21 22:42:27 · 999 阅读 · 0 评论 -
意象框架:连接感知与认知的统一信息结构分析——基于上古汉语同源词意义系统的词源学与认知语言学探索
摘要:本文基于黄易青《上古汉语同源词意义系统研究》,提出人类感知与认知世界共享一个基于意象的统一信息结构框架。通过分析上古汉语同源词系统,揭示了意象作为连接具体感知与抽象认知的基本单元,其通过义素分析法和跨感官通感机制实现意义转化。研究表明,同源词系统呈现出层级性、网络化的整体结构,并通过隐喻/转喻完成了从感知到认知的映射。这一发现不仅印证了具身认知理论,也为人工智能知识表示提供了重要启示,即构建以意象为核心的跨模态知识框架。原创 2025-08-20 22:45:39 · 1084 阅读 · 0 评论 -
人类语义认知统一模型:融合脑科学与AI的突破
本研究提出构建"人类语义认知统一模型",通过认知科学与计算建模的交叉验证框架,整合脑神经机制、语言处理理论与跨文明语义基元。创新性地将训诂学"声近义通"规律与认知语义学结合,开发动态知识表征系统,并建立四阶段验证路径(资源建设-模型开发-应用验证-理论修正)。研究采用多模态方法(fMRI、ERP、眼动追踪)验证模型神经基础,同时引入符号学方阵解析文化框架冲突。实践案例显示,注入传统语言智慧可提升模型性能22%。该框架通过计算模型、认知实验、哲学反思的三层验证机制,为探索人类语义认知的普遍规律提供了新范式。原创 2025-08-09 23:04:35 · 1071 阅读 · 0 评论 -
探索人类底层逻辑一致性的跨学科研究框架:建议、方法与展望
本报告提出"认知-计算"双循环研究框架,旨在破解人类底层逻辑一致性这一跨学科难题。研究将整合训诂学、认知神经科学与知识图谱技术:一方面通过ERP/fMRI实验验证传统语言学原则(如"因声求义")的神经基础;另一方面在知识图谱嵌入中引入信息论度量,构建新型神经符号系统。5年研究计划分为数据库建设、模型研发和跨域验证三阶段,最终目标是建立统一的人类认知一致性理论,推动具备常识推理能力的新一代AI发展。该研究为文理工医深度交叉提供了创新范例。原创 2025-08-08 21:52:47 · 978 阅读 · 0 评论 -
跨学科视域下的深层语义分析与人类底层逻辑一致性探索
本文提出一个跨学科研究框架,旨在探索人类认知中的深层逻辑一致性。研究整合自然语言处理、知识图谱、认知科学、脑神经科学等十余个学科,挑战传统形式逻辑的刚性假设,提出认知似然一致性概念。研究构建包含四大技术路径的方法论:认知增强知识图谱、汉字六书的图神经网络编码、基于信息论的模型-大脑语义流对齐分析,以及训诂学知识的神经可计算化。通过三个阶段的分步实施和包含任务层、认知层、神经层的三维评估体系,最终目标是建立连接人文智慧与人工智能的理论桥梁,开发更接近人类智能的认知驱动型AI系统。原创 2025-08-07 21:57:46 · 972 阅读 · 0 评论 -
论深层语义分析与人类底层逻辑一致性的跨学科探索
本报告提出跨学科研究框架,探索语言深层语义分析与人类认知逻辑一致性规律。报告整合自然语言处理、知识图谱、认知科学、脑神经科学、中国传统训诂学等多领域前沿成果,重点构建两大方法论:一是将训诂学智慧形式化后融入神经符号系统,二是设计脑神经实验验证机器语义空间与人类认知表征的一致性。研究提出统一技术框架和多维评估体系,旨在建立连接符号世界、物理世界与心智世界的认知AI模型,不仅提升人工智能的语言理解能力,更为揭示人类思维本质提供新视角。这一探索将推动人工智能与认知科学的深度融合,具有重要的理论价值和应用前景。原创 2025-08-06 20:23:20 · 779 阅读 · 0 评论 -
跨学科视角下的深层语义分析与人类底层逻辑一致性研究
本文系统性地擘画了一项宏大的跨学科研究蓝图,其核心目标是攻克当前人工智能领域最艰巨的挑战之一:实现真正的深层语义理解。我们不再满足于现有模型在统计层面的成功,而是直面其逻辑脆弱性和常识缺失的根本问题。为此,我们提出的核心思想是:以探寻并模拟“人类底层逻辑一致性”为最终目标,开辟一条前所未有的、通往“深层语义分析”的新路径。这一路径的独创性与核心贡献在于,它实现了中国传统人文智慧与现代前沿科技的深度“握手”。原创 2025-08-05 16:49:55 · 1078 阅读 · 0 评论 -
深层语义统一规律与形式化语义建模的理论基础与计算应用
本文探讨构建统一语义解释模型的理论基础与挑战。研究发现,不同语言在概念表征、论元角色和概念隐喻等方面存在深层共性,指向人类共享的概念结构。为实现机器对深层语义的可靠解析,需进行形式化建模,包括规则提取、数学工具运用以及与句法、语用的接口整合。统一的语义框架将增强NLP的可解释性、提升隐喻理解能力,并为高级推理奠定基础。然而,该模型面临形式系统与认知内容的鸿沟、概念范畴的复杂性等挑战,需跨学科合作解决。这一研究不仅具有理论意义,也将推动人工智能在深度语义解析和复杂推理方面的发展。原创 2025-07-14 03:26:41 · 703 阅读 · 0 评论 -
语义学是否存在普遍真理?从理论分野到NLP的破局可能
摘要:语义学的核心争议围绕是否存在跨语言统一语义真理展开,涉及形式语义学与认知语言学的对立。形式语义学主张逻辑化表达(如蒙太古语法),而认知语言学强调经验性语义生成(如概念隐喻理论)。跨语言研究揭示普遍语义现象(如空间隐喻),但形式化面临二值逻辑局限性和深层语义嵌套的挑战。统一理论或可结合两种范式,为NLP带来突破:提升AI可解释性(如隐喻规则形式化)和增强语境适应能力(语义框架映射)。未来需借助认知科学与计算语言学的交叉研究,实现从语言理解到经验共情的跨越。原创 2025-07-14 17:24:17 · 582 阅读 · 0 评论