语义增强信号的学习

这是一篇纯文字帖,大家可以随便看看

语义增强的概念

​​语义增强​​是通过引入外部知识或高级语义信息,提升模型对输入数据(如图像、视频、文本)的​​深层理解能力​​的技术。其核心目标是:

  • ​​弥补低级特征的不足​​(如像素、词向量)。

  • ​​建立更贴近人类认知的语义关联​​(如“猫→哺乳动物→宠物”)。

为什么要进行语义增强?

可能是因为视觉局限,视频帧模糊、遮挡或者视角单一。仅靠像素级特征难以识别高阶语义

文本歧义,语言大模型生成的描述太过于笼统,比如画面是一个人在打网球,但是大模型生成的描述是一个人在运动,缺乏细节

模态鸿沟,视觉和文本特征天然存在分布差异,直接融合会导致偏差(二者在特征空间中的距离是很远的,即使是描述同一特征,大家可以看我上一篇分析的论文中有个图,我直接放在底下,大家就可以看到视觉和文本在特征空间上的距离有多远)

那么语义增强的目的肯定也是为了解决这些问题了

​如何实现语义增强?

外部知识注入 :融合知识图片,领域术语库。将跑步关联到有氧运动 再到体育运动,提升动作分类粒度

多层级语义建模:分层提取特征  低级-高级 视频帧--边缘/颜色--物体检测--场景理解--行为推理

跨模态对齐增强:使用clip/blip等模型对齐视觉与文本的语义空间  文本“狗”与图像中的狗特征在共享空间中距离更近

语义增强的核心技术

1.知识图谱融合

步骤:检测视频中的实体(如物体、人物) 从知识图谱中提取关联属性(如 网球拍--用于打网球--属于体育器材) 将属性注入分类器或描述生成模块

优势:解决罕见类别或长尾问题(比如槌球这类小众运动)

2.多模态语义蒸馏

方法:用大模型生成视频的多样化描述(如“足球比赛”-激烈对抗-进球瞬间) 通过对比学习,将多样性描述压缩为紧凑的语义向量

效果:增强模型对同一内容不同表述的鲁棒性

3.对抗性语义增强

思路:生成对抗文本(如遮挡视频帧),强制模型学习更本质的语义特征。示例:遮挡“网球拍”后,模型仍能通过人物姿势推断“打网球”。

大家简单看一下公式,我后面会出一个关于对抗训练的帖子

与校准策略的结合

语义增强可直接提升模态内校准(intra-c)和模态间校准(inter-C)的效果

模态内校准:更准确的语义描述--更可靠的文本特征权重  比如:若LLM生成可能是狗或者狼,通过知识图谱关联属性后,偏向狗

模态间校准:跨模态语义一致性--动态调整β值  若视觉检测到“球场”且文本生成“足球”,β倾向于文本模态(因场景语义明确)

举例说明

任务:视频动作识别(输入:模糊视频片段)

如果无语义增强,可能视觉看着是跑步,文本生成是一个人在快速移动。如果有的话 知识图片关联 快速移动+草地+穿球衣 得到是足球比赛  LLM生成文本:球员在草地上冲刺 得到正确分类

大家可以自己去看个语义增强的例子,加深印象 这个就是纯文字描述

### 基于语义对比学习的低光图像增强技术 #### 方法概述 基于语义对比学习(Semantic Contrastive Learning, SCL)的低光图像增强是一种新兴的技术,它通过利用对比学习的思想来提升模型对不同光照条件下的特征提取能力。这种方法的核心在于构建一种能够区分高光和低光区域的有效表示空间[^1]。 具体来说,SCL 的目标是在训练过程中最大化同一场景下正常曝光图像与其对应的低光图像之间的相似度,同时最小化与其他不相关样本间的相似度。这种机制有助于网络更好地理解哪些部分属于物体的真实结构,而哪些是由光线不足引起的噪声或失真。 #### 技术实现流程 以下是该类算法的一般框架: 1. **数据预处理**: 收集大量成对的低光输入图片及其理想状态的目标输出作为监督信号源。 2. **骨干架构设计**: 使用卷积神经网络 (CNNs),例如 U-Net 或 ResNet 结构,用于初步映射像素级关系并生成初始预测图谱。 3. **引入注意力模块**: 如 Cross-Attention 和 Q-Former 这样的高级组件可以被嵌入到整体流水线之中,从而加强局部细节捕捉以及全局上下文关联建模的能力。 4. **定义损失函数**: 设计特定形式的能量项组合——既包括传统的重建误差衡量标准 MSE/L1 Losses ,也融合了来自 CLIP 文本编码器或者自定义视觉表征距离计算所得出的信息熵约束成分。 ```python import torch.nn as nn class SemanticContrastiveLoss(nn.Module): def __init__(self, temperature=0.5): super(SemanticContrastiveLoss, self).__init__() self.temperature = temperature def forward(self, features_1, features_2): """ Computes the semantic contrastive loss between two sets of feature vectors. Args: features_1: Tensor of shape [batch_size, dim]. features_2: Tensor of shape [batch_size, dim]. Returns: A scalar tensor representing the computed loss value. """ batch_size = features_1.shape[0] # Normalize embeddings to unit sphere normed_features_1 = F.normalize(features_1, p=2, dim=-1) normed_features_2 = F.normalize(features_2, p=2, dim=-1) logits_matrix = torch.matmul(normed_features_1, normed_features_2.T) / self.temperature labels = torch.arange(batch_size).to(logits_matrix.device) loss_fn = nn.CrossEntropyLoss() loss_value = loss_fn(logits_matrix, labels) return loss_value ``` 上述代码片段展示了一个简单的语义对比损失函数实例,其中 `features_1` 和 `features_2` 是分别由两个分支产生的特征向量集合;通过交叉熵评估它们之间匹配程度的同时施加温度参数调节强度分布特性。 #### 实验效果分析 实验表明,在多种评测指标上采用此策略均能取得优于传统方法的结果,特别是在 PSNR、SSIM 等定量测量方面表现出显著优势。更重要的是,由于融入了高层次概念指导优化过程,最终得到的画面不仅亮度适中而且色彩还原更加自然逼真。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值