1、引言:数学与计算机科学的桥梁

引言:数学与计算机科学的桥梁

1. 数学与计算机科学的关系

密码学是一门古老而又现代的学科,它的发展历程超过两千年。在现代社会中,密码学不仅仅是保护信息的秘密,更是保障我们日常生活中各种应用安全的关键。无论是自动柜员机、移动电话、互联网商务,还是汽车上的电子点火锁,背后都有密码学的身影。可以说,没有密码学,这些应用都无法正常运作。

数学,尤其是数论,在密码学中扮演着至关重要的角色。正如高斯所说:“数学是科学的女王,而数论是数学的女王。”数论不仅是纯数学的一部分,它还在实际应用中发挥了重要作用。例如,数论中的大整数算术运算是现代密码学的基础,因为许多加密算法依赖于对大整数的操作。当结果长度超过标准数值类型(如16位或32位)所能表示的范围时,基本的算术运算不再适用,这时就需要专门的算法和函数来处理大整数。

2. 大整数算术的重要性

处理大整数的算术运算在密码学中尤为重要。传统的编程语言通常只支持有限范围内的数值类型,如 int long ,这些类型的数值范围有限,无法满足密码学中对大整数的需求。因此,密码学算法不仅要在理论上可行,还需要能够在现实中高效运行。这就要求我们开发能够处理大整数的计算程序,这些程序不仅要稳定、高效,还要具备坚实的理论基础。

为了实现这一目标,本书提供了一套功能,这些功能作为C和C++的扩展,用于处理大整数的计算。这套功能不是简单的“玩具”示例,而是满足专业要求的完整函数和方法集合。它们经过广泛的测试,以确保其稳定性和性能,并最终形成一个有用且全面的编程接口。

3. 理论与实践的结合

本书的目标是将理论与实践

资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 以下是一个使用 Python 调用 TensorRT 转换后的 RT-DETR 模型进行单张图片或图片文件夹批量推理的代码实现说明。该代码通过输入图片路径或文件夹路径、模型路径以及输出图片保存路径,即可完成推理并生成测试结果。运行时,只需使用命令 “python ./infer_tensorrt.py --infer_dir=./inputimgs/ --output_dir ./outputimgs/ --models ./rtdetr_hgnetv2_l_6x_coco.trt” 即可。 这段代码是用于部署 RT-DETR 模型的。它基于 Python 编写,调用了 TensorRT 转换后的模型,能够实现对单张图片或整个图片文件夹的批量推理操作。用户需要提供输入图片的路径(可以是单张图片的路径或包含多张图片的文件夹路径)、模型文件的路径以及推理结果输出图片的保存路径。当所有参数配置完成后,通过运行 “python ./infer_tensorrt.py --infer_dir=./inputimgs/ --output_dir ./outputimgs/ --models ./rtdetr_hgnetv2_l_6x_coco.trt” 这条命令,就可以得到相应的测试结果。 本代码旨在实现 RT-DETR 模型的部署,采用 Python 编程语言,并利用 TensorRT 转换后的模型进行推理。它可以针对单张图片或图片文件夹进行批量推理。用户需要输入图片路径(单张图片或文件夹)、模型路径以及输出图片保存路径。运行时,使用 “python ./infer_tensorrt.py --infer_dir=./inputimgs/ --output_dir ./outputimgs/ -
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值