引言:数学与计算机科学的桥梁
1. 数学与计算机科学的关系
密码学是一门古老而又现代的学科,它的发展历程超过两千年。在现代社会中,密码学不仅仅是保护信息的秘密,更是保障我们日常生活中各种应用安全的关键。无论是自动柜员机、移动电话、互联网商务,还是汽车上的电子点火锁,背后都有密码学的身影。可以说,没有密码学,这些应用都无法正常运作。
数学,尤其是数论,在密码学中扮演着至关重要的角色。正如高斯所说:“数学是科学的女王,而数论是数学的女王。”数论不仅是纯数学的一部分,它还在实际应用中发挥了重要作用。例如,数论中的大整数算术运算是现代密码学的基础,因为许多加密算法依赖于对大整数的操作。当结果长度超过标准数值类型(如16位或32位)所能表示的范围时,基本的算术运算不再适用,这时就需要专门的算法和函数来处理大整数。
2. 大整数算术的重要性
处理大整数的算术运算在密码学中尤为重要。传统的编程语言通常只支持有限范围内的数值类型,如 int
和 long
,这些类型的数值范围有限,无法满足密码学中对大整数的需求。因此,密码学算法不仅要在理论上可行,还需要能够在现实中高效运行。这就要求我们开发能够处理大整数的计算程序,这些程序不仅要稳定、高效,还要具备坚实的理论基础。
为了实现这一目标,本书提供了一套功能,这些功能作为C和C++的扩展,用于处理大整数的计算。这套功能不是简单的“玩具”示例,而是满足专业要求的完整函数和方法集合。它们经过广泛的测试,以确保其稳定性和性能,并最终形成一个有用且全面的编程接口。
3. 理论与实践的结合
本书的目标是将理论与实践