
- LISP Tutorial
- LISP - Home
- LISP - Overview
- LISP - Environment
- LISP - REPL
- LISP - Program Structure
- LISP - Basic Syntax
- LISP - Data Types
- Lisp Macros
- LISP - Macros
- LISP - Backquote and Comma
- LISP - Code Generation Using Macro
- LISP - Variable Capture and Hygienic macro
- LISP - Scope and Binding
- LISP - Macro Writing Style
- LISP - Macro Characters
- LISP - Read-Time Macros
- LISP - Compiler Macros
- LISP - Uses of Macros
- Lisp Functions
- LISP - Functions
- LISP - Functions vs Macros
- LISP - Calling Function using funcall
- LISP - Calling Function using apply
- LISP - Closures
- LISP - Functions as Arguments
- LISP - Functions as Return Values
- LISP - Recursion
- LISP - Built-in Functions
- Lisp Predicates
- LISP - Predicates
- LISP - Generic Data Type Predicates
- LISP - Specific Data Type Predicates
- LISP - Equality Predicates
- LISP - Numeric Predicates
- LISP - Comparison Predicates
- LISP - Logical Predicates
- LISP - List Predicates
- LISP - Custom Predicates
- LISP - Chaining Predicates
- Lisp Arrays
- LISP - Arrays
- LISP - Adjustable Arrays
- LISP - Fill Pointers in Arrays
- LISP - Specialized Arrays
- LISP - Arrays Properties
- LISP - Iterating over Arrays
- LISP - Multidimensional Arrays
- LISP - Row-Major Order
- Lisp Strings
- LISP - Strings
- LISP - String Concatenation
- LISP - String Comparison
- LISP - String Case Conversion
- LISP - String Trimmimg
- LISP - String Searching
- LISP - Getting Substring
- LISP - String Replacement
- LISP - Sorting Strings
- LISP - Merging Strings
- LISP - Accessing Characters of String
- LISP - String length
- LISP - Escape Sequences
- Lisp Sequences
- LISP - Sequences
- LISP - Accessing Element of Sequence
- LISP - Sequence length
- LISP - Getting Subsequence
- LISP - Search Element in Sequence
- LISP - Sequence Concatenation
- LISP - Reversing a Sequence
- LISP - Mapping Sequence Element
- LISP - position of Element
- LISP - Remove an Element
- LISP - Sort Sequence
- LISP - Merge Sequences
- LISP - every function
- LISP - some function
- LISP - notany function
- LISP - notevery function
- Lisp Lists
- LISP - Lists
- LISP - Accessing Elements of Lists
- LISP - Modifications to Lists
- LISP - Using mapcar on List
- LISP - Using mapc on List
- LISP - Using reduce on List
- LISP - Removing elements from List
- LISP - Reversing a List
- LISP - Sorting a List
- LISP - Searching a List
- LISP - List vs Vectors
- LISP - Matrix Multiplication
- Lisp Vectors
- LISP - Vectors
- LISP - Creating Vectors
- LISP - Accessing Elements of Vectors
- LISP - Modifications to Vectors
- LISP - Adjustable Vectors
- LISP - Specialized Vectors
- LISP - Vector Functions
- Lisp Set
- LISP - Set
- LISP - Adding elements to the Set
- LISP - Getting SubSet from a Set
- LISP - Set Difference
- LISP - Set Exclusive OR
- LISP - Set Intersection
- LISP - Set Union
- LISP - Representing Set with HashTable
- LISP - List as Set vs HashTable as Set
- Lisp Tree
- LISP - Tree
- LISP - Recursive Traversal
- LISP - Inorder Traversal
- LISP - Preorder Traversal
- LISP - Postorder Traversal
- LISP - Depth First Traversal
- LISP - Modifying Tree
- LISP - Search Tree
- LISP - Binary Tree
- Lisp Hash Table
- LISP - Hash Table
- Adding Values to Hash Table
- Removing Values from Hash Table
- Updating Values of Hash Table
- Iterating Hash Table Entries
- Searching key in HashTable
- Checking Size of HashTable
- Using Custom Equality Check
- Lisp - Input − Output
- LISP - Input − Output
- LISP - Streams
- LISP - Reading Data from Streams
- LISP - Writing Data to Streams
- LISP - File I/O
- LISP - String I/O
- LISP - Formatting with Format
- LISP - Interactive I/O
- LISP - Error Handling
- LISP - Binary I/O
- Lisp - Structures
- LISP - Structures
- LISP - Accessors and Mutators
- LISP - Structure Options
- LISP - Structure Types
- LISP - Applications and Best Practices
- Lisp - CLOS
- LISP - CLOS
- Lisp - Objects
- LISP - Class
- LISP - Slots and Accessors
- LISP - Generic Functions
- LISP - Class Precedence
- LISP - Metaobject Protocol
- LISP - Multimethods
- LISP - Multiple Inheritance
- LISP - Method Combinations
- LISP - Method Combinations
- LISP - :before Method Combination
- LISP - :primary Method Combination
- LISP - :after Method Combination
- LISP - :around Method Combination
- LISP - + Method Combination
- LISP - and Method Combination
- LISP - append Method Combination
- LISP Useful Resources
- Lisp - Quick Guide
- Lisp - Useful Resources
- Lisp - Discussion
Lisp - Adjustable Arrays
In Lisp, when we define a array, it is of fixed size and cannot be altered. But using adjustable flag while defining an array we can mark it adjustable. This is a powerful option which allows us to change size of an array dynamically.
Key Concepts
Following are the key considerations to understand adjustable array.
Adjustablity
We can increase/decrease size of an array as required. This is an important feature where size of an array is not known at time of creation and can vary as program processes.
Fill Pointer
Fill Pointer is a special index marking the end of the array. It is a logical flag and can quicky reduce the size requirement of an array without making change to underlying physical storage. Fill pointer helps in identifying the total number of elements in use.
Allocation
Whenever we need to adjust an array size to a bigger block of memory, Lisp returns the new array while copying existing elements. It is generally an expensive operation and it is important for performance point of view.
Syntax - Creating Adjustable Array
(make-array <array-size> :adjustable t :fill-pointer t :initial-element <initial-value>)
Where −
make-array − function to create array.
array-size − initial size of an array which can be changed later.
adjustable − flag to mark array as adjustable.
fill-pointer − a fill pointer.
initial-element − to specify initial values to the array elements.
initial-value − initial value of an array element.
Example - Create Adjustable Array
(make-array 10 :adjustable t :fill-pointer t :initial-element 0)
Here, we've created an adjustable array of size 10 with each element initialized with 0.
Syntax - Increase Array Size
; Increase size to 20 (setf my-array (adjust-array my-array 20))
Where −
(adjust-array my-array 20) − function to adjust size of my-array array to new size.
setf my-array − assign the returned array with updated size to my-array object
Syntax - Decrese Array Size
; decrease size to 5 (logical size) (setf my-array (adjust-array my-array 5 :fill-pointer t))
Where −
fill-pointer − flag to modify the logical size
Use of fill-pointer
Following are important LISP functions to be used in conjuction with fill-pointer.
array-total-size − returns the array size, the number of elements an array can hold.
fill-pointer − returns the current position of fill pointer.
(setf (fill-pointer <array-name>) <value>) − sets the fill pointer of array to a new value.
Example - Increasing Array Size dynamically
Following example shows a case of array size growth. Here we've created an array of 5 elements initially. During iteration, when fill-pointer crosses array size, array size is doubled.
main.lisp
; define an adjustable array of size 5 (defvar my-dynamic-array (make-array 5 :adjustable t :fill-pointer t)) ; print the original array (print my-dynamic-array) ; Loop for 16 elements (loop for i from 0 to 15 do ; if fill-pointer is same as array size (when (= (fill-pointer my-dynamic-array) (array-total-size my-dynamic-array)) ; double the array size (setf my-dynamic-array (adjust-array my-dynamic-array (* (array-total-size my-dynamic-array) 2)))) ; add the element to the array (setf (aref my-dynamic-array i) i) ; Increment fill pointer (incf (fill-pointer my-dynamic-array))) ; print the updated array (print my-dynamic-array)
Output
When you execute the code, it returns the following result −
#(NIL NIL NIL NIL NIL) #(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 NIL NIL NIL NIL NIL)
When to use Adjustable Array
Adjustable array is a powerful data structure. Understanding use of fill-pointer is very important in efficiently using memory allocations. We can use adjustable arrays in following cases.
When size of the data is not known in advance.
When we need to add/remove elements from the collection dynamically.
When space is limited and we've to focus to efficient memory allocation.