
- LISP Tutorial
- LISP - Home
- LISP - Overview
- LISP - Environment
- LISP - REPL
- LISP - Program Structure
- LISP - Basic Syntax
- LISP - Data Types
- Lisp Macros
- LISP - Macros
- LISP - Backquote and Comma
- LISP - Code Generation Using Macro
- LISP - Variable Capture and Hygienic macro
- LISP - Scope and Binding
- LISP - Macro Writing Style
- LISP - Macro Characters
- LISP - Read-Time Macros
- LISP - Compiler Macros
- LISP - Uses of Macros
- Lisp Functions
- LISP - Functions
- LISP - Functions vs Macros
- LISP - Calling Function using funcall
- LISP - Calling Function using apply
- LISP - Closures
- LISP - Functions as Arguments
- LISP - Functions as Return Values
- LISP - Recursion
- LISP - Built-in Functions
- Lisp Predicates
- LISP - Predicates
- LISP - Generic Data Type Predicates
- LISP - Specific Data Type Predicates
- LISP - Equality Predicates
- LISP - Numeric Predicates
- LISP - Comparison Predicates
- LISP - Logical Predicates
- LISP - List Predicates
- LISP - Custom Predicates
- LISP - Chaining Predicates
- Lisp Arrays
- LISP - Arrays
- LISP - Adjustable Arrays
- LISP - Fill Pointers in Arrays
- LISP - Specialized Arrays
- LISP - Arrays Properties
- LISP - Iterating over Arrays
- LISP - Multidimensional Arrays
- LISP - Row-Major Order
- Lisp Strings
- LISP - Strings
- LISP - String Concatenation
- LISP - String Comparison
- LISP - String Case Conversion
- LISP - String Trimmimg
- LISP - String Searching
- LISP - Getting Substring
- LISP - String Replacement
- LISP - Sorting Strings
- LISP - Merging Strings
- LISP - Accessing Characters of String
- LISP - String length
- LISP - Escape Sequences
- Lisp Sequences
- LISP - Sequences
- LISP - Accessing Element of Sequence
- LISP - Sequence length
- LISP - Getting Subsequence
- LISP - Search Element in Sequence
- LISP - Sequence Concatenation
- LISP - Reversing a Sequence
- LISP - Mapping Sequence Element
- LISP - position of Element
- LISP - Remove an Element
- LISP - Sort Sequence
- LISP - Merge Sequences
- LISP - every function
- LISP - some function
- LISP - notany function
- LISP - notevery function
- Lisp Lists
- LISP - Lists
- LISP - Accessing Elements of Lists
- LISP - Modifications to Lists
- LISP - Using mapcar on List
- LISP - Using mapc on List
- LISP - Using reduce on List
- LISP - Removing elements from List
- LISP - Reversing a List
- LISP - Sorting a List
- LISP - Searching a List
- LISP - List vs Vectors
- LISP - Matrix Multiplication
- Lisp Vectors
- LISP - Vectors
- LISP - Creating Vectors
- LISP - Accessing Elements of Vectors
- LISP - Modifications to Vectors
- LISP - Adjustable Vectors
- LISP - Specialized Vectors
- LISP - Vector Functions
- Lisp Set
- LISP - Set
- LISP - Adding elements to the Set
- LISP - Getting SubSet from a Set
- LISP - Set Difference
- LISP - Set Exclusive OR
- LISP - Set Intersection
- LISP - Set Union
- LISP - Representing Set with HashTable
- LISP - List as Set vs HashTable as Set
- Lisp Tree
- LISP - Tree
- LISP - Recursive Traversal
- LISP - Inorder Traversal
- LISP - Preorder Traversal
- LISP - Postorder Traversal
- LISP - Depth First Traversal
- LISP - Modifying Tree
- LISP - Search Tree
- LISP - Binary Tree
- Lisp Hash Table
- LISP - Hash Table
- Adding Values to Hash Table
- Removing Values from Hash Table
- Updating Values of Hash Table
- Iterating Hash Table Entries
- Searching key in HashTable
- Checking Size of HashTable
- Using Custom Equality Check
- Lisp - Input − Output
- LISP - Input − Output
- LISP - Streams
- LISP - Reading Data from Streams
- LISP - Writing Data to Streams
- LISP - File I/O
- LISP - String I/O
- LISP - Formatting with Format
- LISP - Interactive I/O
- LISP - Error Handling
- LISP - Binary I/O
- Lisp - Structures
- LISP - Structures
- LISP - Accessors and Mutators
- LISP - Structure Options
- LISP - Structure Types
- LISP - Applications and Best Practices
- Lisp - CLOS
- LISP - CLOS
- Lisp - Objects
- LISP - Class
- LISP - Slots and Accessors
- LISP - Generic Functions
- LISP - Class Precedence
- LISP - Metaobject Protocol
- LISP - Multimethods
- LISP - Multiple Inheritance
- LISP - Method Combinations
- LISP - Method Combinations
- LISP - :before Method Combination
- LISP - :primary Method Combination
- LISP - :after Method Combination
- LISP - :around Method Combination
- LISP - + Method Combination
- LISP - and Method Combination
- LISP - append Method Combination
- LISP Useful Resources
- Lisp - Quick Guide
- Lisp - Useful Resources
- Lisp - Discussion
Lisp - :around Method Combination
:around is one of the standard method combination in CLOS.:around is a powerful way to execute code before and after the primary method, in order to create a wrapper around a generic function call. In this chapter, we're discussing how to create and apply functions using :around with a running example.
Defining :around function
An :around function is defined using following syntax
; define a generic function (defgeneric process-data (data)) ; define an around function (defmethod process-data :around ((data t)) ; call statement before calling the primary function (format t "Starting processing data: ~a~%" data) (let ((result (call-next-method))) ; call the primary function ; print statement after calling the primary function (format t "Finished processing data: ~a, result: ~a~%" data result) result))
defmethod process-data :around ((data t)) − around function is defined on a generic function process-data.
call-next-method − this call is used to invoke next applicable method either another around function or the primary function. call-next-method returned value can be used by around method which can be modified or used.
By placing code before and after call-next-method call, we are effectively wrapping the execution of next function call.
Applications of :around function
Log or trace function calls.
Cache a result.
Validate argument
Modify returned value(s)
Handle error(s)
Example - Use of :around Function
Following is the complete example of a :around function.
main.lisp
; define a generic function (defgeneric process-data (data)) ; define a around function (defmethod process-data :around ((data t)) (format t "Starting processing data: ~a~%" data) (let ((result (call-next-method))) (format t "Finished processing data: ~a, result: ~a~%" data result) result)) ; define integer specific implementation (defmethod process-data ((data integer)) (format t "Processing integer data: ~a~%" data) (* data 2)) ; define string specific implementation (defmethod process-data ((data string)) (format t "Processing string data: ~a~%" data) (concatenate 'string data " processed")) (format t "~a~%" (process-data 10)) (format t "~a~%" (process-data "hello "))
Output
When you execute the code, it returns the following result −
Starting processing data: 10 Processing integer data: 10 Finished processing data: 10, result: 20 20 Starting processing data: hello Processing string data: hello Finished processing data: hello , result: hello processed hello processed
Explanation
When a generic function is called , the around function is called before and after execution of generic function as demonstrated above.
When process-data 10 called, then :around method is executed before it.
A starting message is printed as Starting processing data: 10.
call-next-method is called to execute integer specific method.
Processing integer data: 10 is printed. Processed value 20 is returned.
A finishing message is printed as Finished processing data: 10, result: 20
Same process is repeated for string based generic function.