
- LISP Tutorial
- LISP - Home
- LISP - Overview
- LISP - Environment
- LISP - REPL
- LISP - Program Structure
- LISP - Basic Syntax
- LISP - Data Types
- Lisp Macros
- LISP - Macros
- LISP - Backquote and Comma
- LISP - Code Generation Using Macro
- LISP - Variable Capture and Hygienic macro
- LISP - Scope and Binding
- LISP - Macro Writing Style
- LISP - Macro Characters
- LISP - Read-Time Macros
- LISP - Compiler Macros
- LISP - Uses of Macros
- Lisp Functions
- LISP - Functions
- LISP - Functions vs Macros
- LISP - Calling Function using funcall
- LISP - Calling Function using apply
- LISP - Closures
- LISP - Functions as Arguments
- LISP - Functions as Return Values
- LISP - Recursion
- LISP - Built-in Functions
- Lisp Predicates
- LISP - Predicates
- LISP - Generic Data Type Predicates
- LISP - Specific Data Type Predicates
- LISP - Equality Predicates
- LISP - Numeric Predicates
- LISP - Comparison Predicates
- LISP - Logical Predicates
- LISP - List Predicates
- LISP - Custom Predicates
- LISP - Chaining Predicates
- Lisp Arrays
- LISP - Arrays
- LISP - Adjustable Arrays
- LISP - Fill Pointers in Arrays
- LISP - Specialized Arrays
- LISP - Arrays Properties
- LISP - Iterating over Arrays
- LISP - Multidimensional Arrays
- LISP - Row-Major Order
- Lisp Strings
- LISP - Strings
- LISP - String Concatenation
- LISP - String Comparison
- LISP - String Case Conversion
- LISP - String Trimmimg
- LISP - String Searching
- LISP - Getting Substring
- LISP - String Replacement
- LISP - Sorting Strings
- LISP - Merging Strings
- LISP - Accessing Characters of String
- LISP - String length
- LISP - Escape Sequences
- Lisp Sequences
- LISP - Sequences
- LISP - Accessing Element of Sequence
- LISP - Sequence length
- LISP - Getting Subsequence
- LISP - Search Element in Sequence
- LISP - Sequence Concatenation
- LISP - Reversing a Sequence
- LISP - Mapping Sequence Element
- LISP - position of Element
- LISP - Remove an Element
- LISP - Sort Sequence
- LISP - Merge Sequences
- LISP - every function
- LISP - some function
- LISP - notany function
- LISP - notevery function
- Lisp Lists
- LISP - Lists
- LISP - Accessing Elements of Lists
- LISP - Modifications to Lists
- LISP - Using mapcar on List
- LISP - Using mapc on List
- LISP - Using reduce on List
- LISP - Removing elements from List
- LISP - Reversing a List
- LISP - Sorting a List
- LISP - Searching a List
- LISP - List vs Vectors
- LISP - Matrix Multiplication
- Lisp Vectors
- LISP - Vectors
- LISP - Creating Vectors
- LISP - Accessing Elements of Vectors
- LISP - Modifications to Vectors
- LISP - Adjustable Vectors
- LISP - Specialized Vectors
- LISP - Vector Functions
- Lisp Set
- LISP - Set
- LISP - Adding elements to the Set
- LISP - Getting SubSet from a Set
- LISP - Set Difference
- LISP - Set Exclusive OR
- LISP - Set Intersection
- LISP - Set Union
- LISP - Representing Set with HashTable
- LISP - List as Set vs HashTable as Set
- Lisp Tree
- LISP - Tree
- LISP - Recursive Traversal
- LISP - Inorder Traversal
- LISP - Preorder Traversal
- LISP - Postorder Traversal
- LISP - Depth First Traversal
- LISP - Modifying Tree
- LISP - Search Tree
- LISP - Binary Tree
- Lisp Hash Table
- LISP - Hash Table
- Adding Values to Hash Table
- Removing Values from Hash Table
- Updating Values of Hash Table
- Iterating Hash Table Entries
- Searching key in HashTable
- Checking Size of HashTable
- Using Custom Equality Check
- Lisp - Input − Output
- LISP - Input − Output
- LISP - Streams
- LISP - Reading Data from Streams
- LISP - Writing Data to Streams
- LISP - File I/O
- LISP - String I/O
- LISP - Formatting with Format
- LISP - Interactive I/O
- LISP - Error Handling
- LISP - Binary I/O
- Lisp - Structures
- LISP - Structures
- LISP - Accessors and Mutators
- LISP - Structure Options
- LISP - Structure Types
- LISP - Applications and Best Practices
- Lisp - CLOS
- LISP - CLOS
- Lisp - Objects
- LISP - Class
- LISP - Slots and Accessors
- LISP - Generic Functions
- LISP - Class Precedence
- LISP - Metaobject Protocol
- LISP - Multimethods
- LISP - Multiple Inheritance
- LISP - Method Combinations
- LISP - Method Combinations
- LISP - :before Method Combination
- LISP - :primary Method Combination
- LISP - :after Method Combination
- LISP - :around Method Combination
- LISP - + Method Combination
- LISP - and Method Combination
- LISP - append Method Combination
- LISP Useful Resources
- Lisp - Quick Guide
- Lisp - Useful Resources
- Lisp - Discussion
Lisp - Specialized Vectors
A specialized vector refers to a vector which holds only a specific type of an element. In Lisp, an array or vector can hold any kind of object. A specialized array is way to restrict this functionality where only a specific type of element can be added. Following are key advantage of creating a specialized vector.
Type Restriction− We can store specific type elements like integers, chars and single-float numbers which allows LISP to optimize storage of vectors of these primary types.
Increased Efficiency− LISP can use more efficient storage mechanism and avoid overhead of type checks during every element access.
Optimized Memory Allocation− Specialized vectors are generally for primitive types thus requiring less storage than general type vectors.
Compiler Optimization− Compiler can generate more efficient machine code when type of element is known in advance.
Commonly Specialized Array Types
We can use element-type construct with make-array function to define the required type of elements as shown below:
Vector of Bits
We can create a vector of bits to efficiently store boolean data.
; Create a vector of bits (defvar bit-vector (make-array 10 :element-type 'bit)) ; print vector (print bit-vector) ; print 0 (print (aref bit-vector 2)) ; set a value (setf (aref bit-vector 2) 1) (terpri) ; print 1 (print (aref bit-vector 2))
Output
When you execute the code, it returns the following result −
#*0000000000 0 1
Vector of Bits and characters
We can create specialized vectors as literal as shown below:
; Create a vector of bits (defvar bit-vector #*010101) ; print vector (print bit-vector) (terpri) ; print 1 (print (aref bit-vector 3)) ; Create a vector of characters using string literal (defvar char-vector "Hello") (terpri) ; print vector (print char-vector) (terpri) ; print l (print (aref char-vector 3))
Output
When you execute the code, it returns the following result −
#*010101 1 "Hello" #\l
Vector of Integers
We can create a vector of integers to store numerical data.
; Create a vector of integers (make-array 10 :element-type 'integer)
Vector of Strings
We can create a vector of strings to store character sequences.
; Create a vector of strings (make-array 10 :element-type 'character)
Vector of Single-Float
We can create a vector of single precision floating point numbers for numerical computations.
; Create a vector of single-float (make-array 10 :element-type 'single-float)
Advantages of Specialized Vectors
Type Safety− Due to element type restriction, type safety is ensured by LISP system automatically.
Increased Performance− Specialized array access/modification is significantly faster than general arrays.
Efficient Memory Usage− Lesser memory requirement as no storage requirement for type of each element.
Example
Following code check and predicates on different values.
main.lisp
; define a vector of integers (defvar my-vector (make-array 10 :element-type 'integer)) ; assign integer values (setf (aref my-vector 0) 10) (setf (aref my-vector 1) 20) (setf (aref my-vector 2) 30) ; Output: #(10 20 30 NIL NIL NIL NIL NIL NIL NIL) (print my-vector)
Output
When you execute the code, it returns the following result −
#(10 20 30 NIL NIL NIL NIL NIL NIL NIL)